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Administration

• News:

• Lecture Website: 
https://madm.dfki.de/teaching/mdm2017

• slides for lectures are online 
(current lecture will be posted by today)

• user: “mdm2017user”, password: ”ai4good!”
• tutorial tomorrow, 8:15-9:45, room 36-265
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Supervised Learning

• goal: a mapping of real-world objects (for example, 
images) to pre-defined categories (for example, 
„face“ vs. „non-face“)
• as identified by 

pre-defined "labels"

• Because the relationship between the observed data 
and the target categories is often too complex to be 
defined manually („semantic gap“), the mapping should 
be learned automatically!
• data-driven i.e "samples" 

representing the category
 
 

3



Multimedia Data Mining – Dr. Damian Borth

Applications of Supervised Learning

• OCR
• speech recognition
• SPAM filtering
• credit scoring
• biometrics
• …
• …
• ...
• multimedia retrieval
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Applications in MIR

• image and video categorization
• image annotation / concept detection
• face detection
• face recognition
• speech analysis
• printing technique recognition
• pornography detection
• duplicate detection
• ...
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System Setup (traditional)

multimedia
objects

feature
extraction

statistical 
classification

prepro-
cessing
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feature 
vector

decision 
or

score

• Supervised learning / statistical classification
• given: feature vector x (usually, x∈Rd)
• given: class random variable C ∈{1, ..., K}
• task: make a decision x → C
• often, we infer scores indicating class membership. 

For example, probabilistic scores: 
P(C=c|x), or short P(c|x)
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Fish Example

Duda / Hart / Stork: Chapter 1

data
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X=

● C ∈{salmon, sea bass}
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Fish Example

Duda / Hart / Stork: Chapter 1

• assume we have no camera
• best guess: ?
• follow distribution of fish classes in ocean

• apply prior fishermen's knowlege about fish

• assume our factory has a sophisticated camera 
system extracting features for:

• length "l"
• lightness "x"
• follow evidence as given by observation

• know distribution of different features per fish 
classes (condition)

• There will be a dedicated lecture to vis/audio features
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Fish Example

Duda / Hart / Stork: Chapter 1
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Fish Example
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Fish Example

Duda / Hart / Stork: Chapter 1

12



Multimedia Data Mining – Dr. Damian Borth

Fish Example

Duda / Hart / Stork: Chapter 1
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Fish Example

Duda / Hart / Stork: Chapter 1

feature
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decision boundary

non-linear
decision boundary

!!! “overfitted” !!!

non-linear
decision boundary

“regularized”
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Agenda

1. What is supervised learning ?

2. How to build an “optimal” classifier ?

3. What kind of classifiers are there ?
a. Gaussian CCDs
b. Nearest Neighbors
c. Logistic Regression

4. How to combine different 
classifiers?
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Decision Theory

16



Multimedia Data Mining – Dr. Damian Borth

Decision Theory - Classification

• What can we say about the optimal decision of a 
classifier?

• assume we could compute P(C=c|x)  ∀c
• P(C=c|x) is called the „class posterior“

• Idea: minimize the probability of error
• the optimal decision becomes:

• extension with cost (Duda/Hart/Stork): 
Spam Filtering / Poisoned Fish / Face Detect.
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Decision Theory - Ranking

• Now let's assume we build a retrieval system instead 
of a classification system

• samples to retrieve: x1,..,xn with labels c1,..,cn ∈{0,1}
• label ci=1 (relevant), ci=0 (non-relevant)
• the labels are unknown, but estimates P(ci=1|xi) are 

given

• Find the best ranking π : {1,...,n} → {1,..,n}
• π maps rank r to document xπ(r)
• user inspects retrieval results up to rank r*

• Idea: maximize the expected number of relevant 
documents retrieved
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Decision Theory - Ranking
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Decision Theory – Ranking

• solution: place the documents xi with highest 
P(ci=1|xi) at the top r* ranks
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Decision Theory

• Conclusion:

For both classification and retrieval systems to 
make optimal decisions, we need to know P(c|x)

• Problem: to know P(c|x) for all x, we would require 
„infinitely“ dense training samples over the feature 
space.

• In practice, we need to „extrapolate“ P(c|x) from a 
finite training set by supervised learning.
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Supervised Learning - Setup

• The supervised learning setup – given is a 
training set X

• samples x1,..,xn  ∈Rd  

• labels c1,..,cn ∈{1,..,K}

• Because we have labels for all training 
samples, we speak of supervised learning
• labels for some (but not all) samples: 

semi-supervised learning
• no labels: unsupervised learning 
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Approach – Supervised Learning

• Example illustration
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0
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Classification – Approaches
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Agenda

1. What is supervised learning ?

2. How to build an “optimal” classifier ?

3. What kind of classifiers are there ?
a. Gaussian CCDs
b. Nearest Neighbors
c. Logistic Regression

4. How to combine different 
classifiers?
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An Example of a 
Generative Model -

Gaussian Class-conditional 
Densities

27



Multimedia Data Mining – Dr. Damian Borth

Decision Theory and Bayes' Rule

• We want to estimate P(c|x)
• Apply Bayes' rule

posterior

prior

evidence

class-conditional
density

• two kinds of methods
• discriminative: only model P(c|x)
• generative: model P(c,x)
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Class-conditional Densities

• Let us focus on generative models for now
• Most important: class-conditional densities

• two classes (1/0, relevant/non relevant)
• evidence: marginalizes out / same for all classes
• prior: has no influence on ranking 
• (assume P(c)=1/2 ∀c)

• simplify
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Example: Gaussians

• frequently used class-conditional densities 
(CCDs): normal (= Gaussian) distribution 
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“Central Limit Theorem”

31

Source: https://de.wikipedia.org/wiki/Zentraler_Grenzwertsatz

● “when independent random variables are added, their 
sum tends toward a normal distribution”
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Gaussian CCDs: Example

• example: determine the gender c of a 
person (c=0/1 for women/men) by his/her 
height x

„The Living Histogram“
32
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Gaussian CCDs: Example
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Multi-variate Gaussians

• This can be extended to multiple 
dimensions using multi-variate Gaussians 
(with dimension d)
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Training

• Question: How do we know the model 
parameters θ = (μ1, Σ1, μ0, Σ0)?

• Answer: training
• Input: a labeled training set (x1,c1),..,(xn,cn)

traininglabeled
data testing

un-
labeled

data
decision

para-
meters

θ
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Gaussian CCDs – Training

• Example: train μ1 on X1 = {xi | ci=1}
• Popular approach: 

maximum likelihood (ML)
= choose the parameters that make the 
observed training data most likely
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Gaussian CCDs – Training

• Conclusion:
• ML estimate for mean = empirical mean
• Works similar for variances (ML estimate = 

empirical variance)
• Not as obvious for other distributions

more information on parameter estimation:
see Duda/Hart/Stork
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Overfitting

• We have previously observed a 
fundamental challenge to pattern 
recognition systems: overfitting

• „symptoms“: error on the training set is 
significantly lower than on the test set

• causes:
• few training samples
• high dimensions („curse of dimensionality“)
• many system parameters
• model does not fit the data
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A Non-parametric Model -
Nearest Neighbor
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Parametric vs. Non-parametric Approaches

• So far, we assumed P(x|c) to be Gaussian.
• What about these distributions? 

• Often, we don't know the parametric form of P(x|c)
• Possible approaches:

• mixtures of Gaussians
• non-parametric methods (no parameters, no training)
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K-Nearest Neighbor Classification

• given: labeled training samples 
(x1,c1),..,(xn,cn)

• training: None
• classification:

• given: unlabeled sample x
• rank training samples by their 
distance from x:

• xπ(1), xπ (2), ...xπ (K), xπ  (K+1), ..., xπ  (n)

• set 
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3-Nearest Neighbor: Example
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?
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Nearest Neighbor - Example

K=1

K=10 K=50

K=3

K=200
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Nearest Neighbor – Statistical Motivation

• derivation why this works:
• Duda/Hart/Stork (Chapter 4)
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Nearest Neighbor - Discussion

• When is nearest neighbor (NN) successful?
• we need many samples in small regions!

• Is nearest neighbor better than Gaussians?
• not necessarily – if the underlying class-conditional 

densities are truly Gaussian and we can determine 
parameters reliably, Gaussians are the optimal model!

• Are there really no parameters?
• there's K!

• low K = high variance
• high K = oversmoothing
• good compromise in practice: K=√n
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A Discriminative Model -
Logistic Regression
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Discriminative Models

• We saw a generative model - Gaussians
• we know P(x|c) and P(c), i.e. we know P(c,x)
• we can „generate“ samples from P(c,x)

• draw c' from P(c)
• draw x from P(x|c')

• Alternative: omit P(x|c) and P(c), and 
directly estimate P(c|x)! → discriminative 
models
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Logistic Regression

• remember the Gaussian case 
P(c|x) was a sigmoid function

 
• where 
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Sigmoids in more Dimensions

• In more dimensions, we have a weight 
vector w

• The decision boundary becomes a 
(linear) hyperplane

• We can omit b using
augmented vectors
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Logistic Regression: Approach

• The parameter vector w determines the 
decision function

• Training: again, estimate w by Maximum 
Likelihood (ML)
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Logistic Regression: Approach

• Optimization: use gradient descent
• see [Bishop, 205f]

• initialize
• until convergence:

• set 

 
• set k=k+1
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Logistic Regression - Discussion

• Logistic Regression – What's good about it?
• learn only what we need → less overfitting

• Gaussians: 2D + 2*D*D parameters 
(means+variances)

• Logistic Regression: D+1 parameters
• What's bad about it?

• linear decision boundaries only
• gradient descent optimization may end 

up in local optima
• gradient descent optimization is difficult 

to tune (step size)
• There are other (linear and non-linear) classifiers with 

different optimization criteria
• error minimization (perceptron, multi-layer perceptrons)
• margin maximization (SVMs)
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Agenda

1. What is supervised learning ?

2. How to build an “optimal” classifier ?

3. What kind of classifiers are there ?
a. Gaussian CCDs
b. Nearest Neighbors
c. Logistic Regression

4. How to combine different 
classifiers?
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Classifier Combination -
Heuristic Rules
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Classifier Combination

• In Multimedia Information Retrieval, 
classifiers frequently combine different 
pieces of evidence
• multiple features
• multiple modalities
• multiple classifiers
• multiple training sets
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Early Fusion vs. Late Fusion

• Different combination strategies
• early fusion = concatenate features
• late fusion = combine classification results

early fusion

x1

x2

…
xM

classifier decisi
on

[x1,x2,..,
xM]

classifierx1

x2

…
xM

late fusion decisi
on

P(c|x2)classifier

classifier
...

P(c|x1)

P(c|xM)
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Late Fusion: Problem Formulation

• Assumption: two classes, M classifiers
• Test set x1,..,xn  
• Each sample consists of different 

modalities: xi = (xi
1,..,xi

M)
• Each classifier gives scores Pm(c=1|xi

m)
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Classifier Combination – Heuristic Rules

• Other heuristic rules
• product rule

• statistical motivation by applying Bayes' rule

• sum rule

• statistical motivation: Bishop, p.656f
• if Pm are estimated from subsamples of the 

training data, this approach is called bagging
• min/max rule
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Late Fusion - Example

• Example: Detecting „basketball“ in 
YouTube clips

• What's the problem here?
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Weighted Sum Fusion

• Weighted sum fusion
 
 

• We can give different weights to classifiers 
of different accuracy

• How to learn weights? 
→ example: grid search
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Weighted Sum Fusion

• On what data should we learn the weights?

• determine on the test set?
• determine on the training set?
• determine on a separate validation set!
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Conclusion
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Discussion

• This lecture – 3 sample classifiers
• Generative models (with Gaussian CCDs)
• K-nearest neighbor
• Logistic regression

• The Big Answer – Which one is the best?
• the right classifier depends on the distribution 

of the target data...
• … on the preprocessing ...
• … on the features...
• … on the amount of training data.

• → no-free-lunch theorem
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