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Supervised Learning

« goal: a mapping of real-world objects (for example,
images) to pre-defined categories (for example,

Sface“ vs. ,non-face”) EHE <_>c

* as identified by {

pre-defined "labels”

« Because the relationship between the observed data
and the target categories is often too complex to be
defined manually (,semantic gap®), the mapping should
be learned automatically! DEARMEL W

o \ ERENF LU
* data-driven i.e "samples EYYTONEEE
representing the category I I o
BEgESNe U

249
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Applications of Supervised Learning

« OCR

» speech recognition
« SPAM filtering

» credit scoring

* biometrics

* multimedia retrieval

Multimedia Data Mining — Dr. Damian Borth



Applications in MIR

* Image and video categorization

* image annotation / concept detection
* face detection

* face recognition

* speech analysis

* printing technique recognition

e pornography detection

 duplicate detection
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System Setup (traditional)

multimedia prepro- feature
objects cessing extraction

decision
or
score

pre-
data pared
data

feature
vector

« Supervised learning / statistical classification
» given: feature vector x (usually, x€RY)
* given: class random variable C €{1, ..., K}
« task: make a decision x — C
« often, we infer scores indicating class membership.
For example, probabilistic scores:
P(C=c|x), or short P(c|x)
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Preprocessing

v

prepared
data

Feature extraction

v

feature
vector

Classification

/N

Duda / Hart / Stork: Chapter 1
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e assume we have no camera
* best guess: ?
* follow distribution of fish classes in ocean
 apply prior fishermen's knowlege about fish

« assume our factory has a sophisticated camera
system extracting features for:
* length "I"
* lightness "x"
* follow evidence as given by observation
« know distribution of different features per fish
classes (condition)

 There will be a dedicated lecture to vis/audio features
Duda / Hart / Stork: Chapter 1
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Duda / Hart / Stork: Chapter 1
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Duda / Hart / Stork: Chapter 1
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feature X =
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! “overfitted” !!! “regularized”

Duda / Hart / Stork: Chapter 1
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1. What is supervised learning ?
2. How to build an “optimal” classifier ?

3. What kind of classifiers are there ?
a. Gaussian CCDs
b. Nearest Neighbors
c. Logistic Regression

4. How to combine different
classifiers?
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Decision Theory - Classification

« What can we say about the optimal decision of a
classifier?
« assume we could compute P(C=c|x) Vc
* P(C=c|x) is called the ,class posterior®

 |dea: minimize the probability of error
 the optimal decision becomes:

c* = argmax P(c|x)

 extension with cost (Duda/Hart/Stork):
Spam Filtering / Poisoned Fish / Face Detect.
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Decision Theory - Ranking

* Now let's assume we build a retrieval system instead
of a classification system
* samples to retrieve: x,,..,.x with labels c.,..,c_ €{0,1}
* label c=1 (relevant), c=0 (non-relevant)
» the labels are unknown, but estimates P(c.=1|x) are
given

* Find the best ranking 7 : {1,...,n} — {1,..,n}
e T maps rank r to document X
 user inspects retrieval results up to rank r*

* Idea: maximize the expected number of relevant
documents retrieved
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Decision Theory - Ranking

* Now let's assume we build a retrieval system instead
of a classification system
* samples to retrieve: x,,..,.x with labels c.,..,c_ €{0,1}
* label c=1 (relevant), c=0 (non-relevant)
» the labels are unknown, but estimates P(c.=1|x) are
given

* Find the best ranking 7 : {1,...,n} — {1,..,n}
e T maps rank r to document X
 user inspects retrieval results up to rank r*

« |dea: max [ 1 Vant
documer] 7" = arg max E E Sl
r=1 J
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Decision Theory — Ranking

7" = argmax F
s

r

sk

| r=1

Z Cr(r)

= > E[cx()]
r=1

= argmaxy y _; |1+ P(Cair) = UZa(r))
0 - P(CW(T) — lew(r))]

ES

= arngXZP(cwm = 1zz(r))

r=1

» solution: place the documents x. with highest
P(c=1|x.) at the top r* ranks
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Decision Theory

 Conclusion:

For both classification and retrieval systems to
make optimal decisions, we need to know P(c|x)

* Problem: to know P(c|x) for all x, we would require
Jinfinitely” dense training samples over the feature

space.

* In practice, we need to ,extrapolate” P(c|x) from a
finite training set by supervised learning.
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Supervised Learning - Setup

* The supervised learning setup — given is a

training set X
* samples X,,..,X_ eRd

* labels c.,..,c_ €{1,...K}

» Because we have labels for all training

samples, we speak of supervised learning
* labels for some (but not all) samples:
semi-supervised learning
* no labels: unsupervised learning
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Approach — Supervised Learning

« Example illustration

== 9
8y

decision
boundary
feature -
space 1 ?

decision regions

Multimedia Data Mining — Dr. Damian Borth



Classification — Approaches

* A |ot of different statistical models have
been suggested

k-nearest
N\ neighbor

boosting

nearest
neighbor

Gaussian

Mixture

Models
S~

kernel
densities

Gaussian
ccd's

Logistic

Naive
Regr Bayes'
\ classifiers

Hidden
Markov
Models
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Classification — Approaches

e Let’'s have a look at

boosting

nearest
neighbor

Gaussian
Mixture
Models

kernel
densities

Hidden
Markov
Models
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1. What is supervised learning ?
2. How to build an “optimal” classifier ?

3. What kind of classifiers are there ?
a. Gaussian CCDs
b. Nearest Neighbors
c. Logistic Regression

4. How to combine different
classifiers?
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An Example of a
Generative Model -
Gaussian Class-conditional
Densities



Decision Theory and Bayes' Rule

* We want to estimate P(c|x)

* Apply Bayes' rule class-conditional
prior  density

R CONGDITD)
HOENGD)

evidence

posterior

* two kinds of methods
* discriminative: only model P(c|x)
* generative: model P(c,x)
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Class-conditional Densities

* Let us focus on generative models for now

* Most important: class-conditional densities
* two classes (1/0, relevant/non relevant)
 evidence: marginalizes out / same for all classes

* prior: has no influence on ranking
« (assume P(c)=1/2 Vc)

 simplify

P(zlc=1)
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Example: Gaussians

 frequently used class-conditional densities
(CCDs): normal (= Gaussian) distribution

N (x;p,0) = \/2;7@@{—(%2;5) |
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“Central Limit Theorem”

e ‘when independent random variables are added, their
sum tends toward a normal distribution”

n=5p=05 n=16,p=0.5 n=160,p=0.5
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Source: https://de.wikipedia.org/wiki/Zentraler _Grenzwertsatz
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Gaussian CCDs: Example

« example: determine the gender c of a
person (c=0/1 for women/men) by his/her

height x P(z|lc=0) = N(x;po,00)
P(xle=1) = N(x;p1,01)
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Gaussian CCDs: Example

P(c=1|x) (green)
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Multi-variate Gaussians

* This can be extended to multiple
dimensions using multi-variate Gaussians

(with dimension d)

i1 ) = s - o=@ — WS @ — )}

MV Gaussian MV Gaussian class posterior
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* Question: How do we know the model
parameters 6 = (p1, 2., Mos ZO)?

* Answer: training

* Input: a labeled training set (x,,c.),..,(X ,C )

un-
labeled
training e —| testin
data g
para-
meters
0
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Gaussian CCDs — Training

» Example: train py, on X, ={x. | c=1}
* Popular approach:
maximum likelihood (ML)
= choose the parameters that make the
observed training data most likely

*

pi = argmax P(Xi|p)

...derive...

1
"l 2

re X
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Gaussian CCDs — Training

» Conclusion:

* ML estimate for mean = empirical mean

* Works similar for variances (ML estimate =
empirical variance)

* Not as obvious for other distributions

more information on parameter estimation:
see Duda/Hart/Stork
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Overfitting

* We have previously observeda
fundamental challenge to pattern l
recognition systems: overfitting

« ,symptoms”: error on the training set is
significantly lower than on the test set

* Caduses.
 few training samples
* high dimensions (,,curse of dimensionality”)
* many system parameters
* model does not fit the data

Lightness
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A Non-parametric Model -
Nearest Neighbor



Parametric vs. Non-parametric Approaches

« So far, we assumed P(x|c) to be Gaussian.
« What about these distributions?

. - =
+
a + 2 M- gt o ot .
- ¥ :
z a + +‘. X 2 ¥ ‘;‘-\t&‘ b :
4 + :
L] L E : * 4y % + 1+ -I--:i" !
: * i#r I 5 ¥ i
4 * I -2 -z ¥ *'H' &.‘: :
¥ i
+ ~ — = * - :
1 -a . -1
[ ] 1o -1 o 1 o [ )
) % L

« Often, we don't know the parametric form of P(x|c)
» Possible approaches:
» mixtures of Gaussians
* non-parametric methods (no parameters, no training)
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K-Nearest Neighbor Classification

* given: labeled training samples
(X1,C4)seen(X ,C )

* training: None

» classification:

e given: unlabeled sample x

¢ rank training samples by their
distance from x:

& X X X
m(l

m(K) ! XTr (R+1) ! = =1

K
® set P(c|a:) _ Zk:l 5[(;W(k)vc)

1L

(n)
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3-Nearest Neighbor: Example
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Nearest Neighbor - Example

K=1 K=3

MNearest Nelghbor Nearest Nelghbor

K=10 K=50 K=200

Nearest Nelghbor Nearest Nelghbor Nearest Nelghbor
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Nearest Neighbor — Statistical Motivation

* derivation why this works:
» Duda/Hart/Stork (Chapter 4)

e DA el AL

LA @A o2
ERy3y Fame 21

w380 7, M

f T e O ?‘”_')Z

-a

M Zegr ¥
— =
“ L5e3) L o

S i

"Mo doubt about it, Ellington - we've mathematically
expressed the purpuse of the universe. God, how
| love the thrill of scientific discovery!"
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Nearest Neighbor - Discussion

* When is nearest neighbor (NN) successful?
« we need many samples in small regions!

* Is nearest neighbor better than Gaussians?

* not necessarily — if the underlying class-conditional

densities are truly Gaussian and we can determine
parameters reliably, Gaussians are the optimal model!

 Are there really no parameters?
* there's Kl
 low K = high variance
* high K = oversmoothing
 good compromise in practice: K=vn
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A Discriminative Model -
Logistic Regression



Discriminative Models

* We saw a generative model - Gaussians
« we know P(x|c) and P(c), i.e. we know P(c,x)

* we can ,generate” samples from P(c,x)

« draw c' from P(c)
« draw x from P(x|c")

* Alternative: omit P(x|c) and P(c), and
directly estimate P(c|x)! — discriminative
models
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Logistic Regression

 remember the Gaussian case
P(c|x) was a sigmoid function

P(c=1|x) =c(w-x + b)

P(c=1|x) (green)

1.0

 where

0.8

Q
Ve
T~
N—
|
0.6

0.4

0.2
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Sigmoids in more Dimensions

* In more dimensions, we have a weight
vector w
P(c=1lz) =0(w-x +b)
* The decision boundary becomes a
(linear) hyperplane

2D Sigmoid Function

* We can omit b using
augmented vectors

r = (x1,..,24,1)

w = (wy,..,wq,b)
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Logistic Regression: Approach

* The parameter vector w determines the
decision function

 Training: again, estimate w by Maximum
Likelihood (ML)

w* = argmg,XP(cl, s C | Ty ey T, W)
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Logistic Regression: Approach

* Optimization: use gradient descent
 see [Bishop, 205f]

TN T 0

e initialize w

 until convergence:
* set

= w —I—)\Z i —o(w-x;)) - x;]

o set k=k+1
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Logistic Regression - Discussion

 Logistic Regression — What's good about it?
 learn only what we need — less overfitting
» Gaussians: 2D + 2*D*D parameters
(means+variances)
 Logistic Regression: D+1 parameters
* What's bad about it?
* linear decision boundaries only
» gradient descent optimization may end
up in local optima
 gradient descent optimization is difficult
to tune (step size)
* There are other (linear and non-linear) classifiers with
different optimization criteria
 error minimization (perceptron, multi-layer perceptrons)
* margin maximization (SVMs
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1. What is supervised learning ?
2. How to build an “optimal” classifier ?

3. What kind of classifiers are there ?
a. Gaussian CCDs
b. Nearest Neighbors
c. Logistic Regression

4. How to combine different
classifiers?
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Classifier Combination -
Heuristic Rules



* [n Multimedia Information Retrieval,
classifiers frequently combine different

pleces of evidence

* multiple features
« multiple modalities
* multiple classifiers
« multiple training sets

At/ F oos ¥R AEXCLUSIVE 4 1608
W NEWs ey i 11,866 |
&M E]
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* Different combination strategies
* early fusion = concatenate features
+ late fusion = combine classification results

classifier

early fusion

classifier

classifier - late fusion

LK

classifier P(c|xM)

fir Kinstliche
3 Intelligenz GmbH



* Assumption: two classes, M classifiers

* Test set x,,

« Each sample consists of different
modalities: x. = (x,..,x")

+ Each classifier glves scores P™(c=1[x")

Plc=1|z;) = F[P'(c=1|z;),P*(c=1]x}),...,
PY = e =1z;" "), PY (e = 1]aj")]

S Deutsches
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* Other heuristic rules
* product rule P(c|z) = Hpm (clx)

* statistical motivation by applying Bayes rule

* sum rule P(c|z) = me (c|z)

« statistical motivation: Bishop, p.656f
 if P are estimated from subsamples of the
training data, this approach is called bagging

* min/max rule

fir Kinstliche
v Intelligenz GmbH



Late Fusion - Example

« Example: Detecting ,basketball” in
YouTube clips

Gnuplot (window id : 0) | =

B fHreaq »?

T T T
positive samples +
negative samples =

classifier 2 (sift)

0.4 0.6 0.8
classifier 1 (motion)

0.674797, 0.188265

» What's the problem here?
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* Weighted sum fusion

P(c|x;) Z"wm P™(c|x;) wam =1
_ ™ .

* We can give different weights to classifiers
of different accuracy

* How fto learn weights?
— example: grid search
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Weighted Sum Fusion

* On what data should we learn the weights?

« determine on the test set?
« determine on the training set?
« determine on a separate validation set!
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* This lecture — 3 sample classifiers
* Generative models (with Gaussian CCDs)
* K-nearest neighbor
* Logistic regression
* The Big Answer — Which one is the best?
* the right classifier depends on the distribution
of the target data...
* ... on the preprocessing ...
* ... 0n the features...
* ... on the amount of training data.

e — no-free-lunch theorem
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