
University of Kaiserslautern

Department of Electrical and Computer Engineering

Thesis

Dewarping Documents Using a
Stereo System

submitted for the degree of Master of Science

by

Soner Özgün Pelvan

Supervisors: Prof. Dr. Thomas Breuel
Dipl.-Inf. Adrian Ulges

Kaiserslautern, 2007

Declaration

I, Soner Özgün PELVAN, declare that this thesis is my own work and that,

to the best of my knowledge, it contains no material previously published, or

substantially overlapping with material submitted for the award of any other

degree at any institution, except where due acknowledgment is made in the

text.

Acknowledgments

I would like to thank everybody that has helped me to build up a better

knowledge on computer engineering. I would like to specially thank my

family for their support and their belief in me. Other that that I want to

thank Prof. Norbert Wehn for letting me work on hardware design and help

me learning new technologies. I want to thank the whole Fraunhofer ITWM

Optimization Team for making me a member of their group. At last I want to

thank the whole IUPR Team especially to Adrian Ulges and Daniel Keysers

for their support on making this thesis possible.

Motivation

The first step in every research is a motivation to achieve a task that is worth

spending time for.

Printed material scanning to create electronic versions of printed material

has become more important in the last decade as scanning methods become

easier and cheaper. However naive approaches using a flatbed scanner in the

case of a book do not always create expected results. This leads to a new

research area. Using cameras to capture images of documents and the apply

some post processing on these images to obtain a version as if taken from

a flat document. Companies like ”Google” already begin a research on this

topic and have made quite a success with its ”Google Book Search”. However

methods used by Google and other companies are still very complicated and

expensive.

In this thesis we approach the same problem by using a stereo camera system.

This stereo system is used to create a triangular mesh that approximates the

book surface. Then we implement a R3 → R2 mapping that preserves the

angles of triangles in 3D mesh in the 2D mesh. All these are done on software

and can be used in any computer. The whole system can be a solution for

home users that want to digitize their printed media.

Related Work

As we have mentioned in motivation part, In this thesis, we present a de-

warping method to flatten document images. We use a 3D model to dewarp

1 the document images.

Kakumanu and N. Bourbakis [1] purposed an image-text dewarping method-

ology based on robust estimation of text-lines. To remove both these distor-

tions and to produce a flattened view of the text, they use the cues present

in the image-text, i.e., the text-lines on the surface of the page are straight.

Kakumanu and N. Bourbakis [1] used single camera image. In case of book

image, single camera image can miss text information near to spine of the

book. The state-of-the-art OCR (optical character recognition) systems have

a very low performance on such images.

Adrian Ulges, Christoph H. Lampert and Thomas M. Breuel [2] presented a

new algorithm to dewarp document images.It requires only a single camera

image as input. This algorithm relies on a priori layout information instead

of additional hardware. In our approach to dewarping, we used 3D model

of document image. We work with stereo image pair to make 3D model of

document image. In this way, we gain high depth information of document

surface. We do not miss any information even near to the spine of the book.

The accurate 3D model produces nice dewarped document images, which

are well suited for The state-of-the-art OCR (optical character recognition)

systems.

1First part of this thesis, presented by Khawar Parvez

Abstract

In this thesis we address the problem of the de-warping document images

using a conformal mapping. Instead of finding a direct mapping between the

document image and the flattened image, we first devise a way to build a 3D

model of the document and compute a mapping from 3D to 2D.

We then apply this mapping between original document image and its cor-

responding flattened image to de-skew the original document image. Our

experiments show that this method is not very robust to noise and works

well under conditions like having a uniform point distribution with no or

small noise margin. These problems proved to be very hard to tackle, how-

ever we have devised some methods to solve some of the problems to gain

acceptable results.

Contents

1 Introduction 16

2 Stereo Matching 21

2.1 Stereo System and Rectification of Images 21

2.2 Matching Problem . 22

2.3 Our Approach . 25

2.3.1 Determining the Displacement Vector 26

2.3.2 Finding the Matches 26

3 Smoothing 32

3.1 Linear Least Squares Method 35

3.1.1 Fitting to a plane . 35

3.1.2 Fitting to a paraboloid 36

3.2 RANSAC . 40

3.2.1 General Algorithm . 40

3.2.2 Our implementation 41

4 Separating a Book Image 44

4.1 Problem . 44

4.2 Method . 44

5 De-warp 48

5.1 Conformal Mapping . 49

5.2 Delaunay Triangulation . 50

5.3 De-warping Method . 51

5.4 Method . 52

6 De-skew 60

7

7 Experimental Results 62

7.1 Experiments on Stereo Matching 62

7.1.1 Experiments on Planar Documents 62

7.1.2 Experiments on Spine of a Book 66

7.2 Experiments on Smoothing . 67

7.2.1 Experiments on Planar Documents 67

7.2.2 Experiments on Book Images 73

7.3 Experiments on De-warping 74

7.3.1 Experiments with Cylinder 75

7.3.2 Experiments on Flat Paper Images 76

7.3.3 Experiments on Book Images 80

8 Conclusions 85

A APPENDIX 87

A.1 Bilinear Interpolation . 87

A.2 Barycentric Technic for Determining Triangle Points 87

A.3 Gradient Descent . 89

8

List of Tables

1 Results of distance vectors for predictors 67

9

List of Figures

1 This figure shows an image of a book taken by one of the

cameras in the setup. The lines are drawn to show the curl in

the text of the book image. 17

2 This figure shows an image of a planar document. The lines

are again drawn to show that there is no curl in this image . . 17

3 This figure shows the problem addressed. Left image shows

the input picture and right picture shows the aimed output. . 18

4 This figure shows the system overview of the whole software. . 19

5 Our stereo system for stereo view. Both cameras covers the

same view thus enabling us to get a good 3D model 22

6 This figure shows an image pair taken by our stereo sytem and

their rectified versions. The top images are the original images

and the bottom pair is the rectified versions. 23

7 This figure shows an example of matching blocks taken from

different images. Red rectangle is the point we try to match.

Here dx = 1 and dy = 2 . 24

8 This is an example of feature points returned from Harris Fea-

ture Extraction Method. As you can see they are the best

approximations to the corners of letters 25

9 This figure shows parts of images taken by the stereo system.

The white boxes on the left image shows the Harris feature

Points. The white boxes on the right image shows the matches

of these feature points . 25

10 This figure shows an image pair taken by our stereo system

and images of edges detected by RAST. 27

10

11 This figure shows an image pair taken by our stereo system.

In the left picture black cross shows a feature point to be

matched. In the right picture the red cross shows the predictor

location whereas the yellow cross shows the location of exact

match. 27

12 This figure shows an image pair taken by our stereo system.

The left picture shows the picture where we extract featurs

and features are shown by white squares. The right picture

shows the matching points in white squares. 29

13 This figure shows the images taken from both cameras in the

case that same blocks are very near. In this picture, the left

side shows the source image and the right side shows its stereo

pair. The blue rectangle shows the initial start point where

the matching algorithm begins its search, whereas the green

rectangle shows the matched point. As easily observed, in-

stead of going through the yellow line to find the light blue

point,which is the actual match, our algorithm goes through

the red line to find the green point which is a mismatch. . . . 30

14 This figure shows the images taken from both cameras for

the spine of a book. The drastical change in shape, curl and

contrast in both pictures can easily be observed 30

15 This picture shows an example of a smoothing. The left image

shows the model without smoothing whereas the right image

shows the smoothed version 32

11

16 This figure shows different book surface models. We can see

apparently that the two book surfaces are totally different.

This roves that it is not possible to find a function fitting to

all book surfaces. 33

17 This is a picture of an un-smoothed 3D model. As you can

see outliers are highlighted. 34

18 This picture shows a 3D model for the spine of the book. . . . 37

19 This picture shows an over estimated curl in the spine of the

book. 38

20 This picture shows the process of moving an outlier through

the camera projection line to the intersection with the fitting

plane. 42

21 In this figure we have all three steps of separation of a book

image together. In the first step we find a point near to the

spine by intersecting the diagonals from the corner of the book.

In the second image we cut out a neighborhood around the

intersection point.The third picture shows the longest vertical

line returned from the RAST algorithm 46

22 This picture shows the result of the page separation of the

book image in Figure 21. 47

23 This picture shows a case in which our separation algorithm

fails. The reason is the intersection point of the diagonals is

not very near to the spine thus the image separated from the

original image does not include spine in it. 47

24 Example of a triangulation done on the image 51

12

25 This figure shows the parametrization done from mathbbR3 →

R2. All the vectors N , X, Y , A and B can be visualized. The

corresponding triangle in u− v plane is also showed. 53

26 Parts of a planar document with perfect matching between

two images . 64

27 Images of a planar document that has a high depth change

and skew . 64

28 Images of a planar document. There is a very low difference

between two images . 65

29 This figure shows a part of book image near the spine of the

book.Green points show the exact points of the feature points

whereas the blue points show the matches. 65

30 This figure shows blocks taken from the image near to the

spine of the book. We can observe the difference in size and

orientation. 65

31 This picture shows the results of our second matching algo-

rithm. As can be seen easily from the pictures, the point to

be matched and the initial guess points should be near to each

other . 68

32 This picture shows an unsmooth model of a planar document . 69

33 This picture shows results of smoothing(fitting to a plane) for

different variable values. In all pictures above we fix l = 200

and τ = 1mm. For the left top image sigmax = 10 and

sigmay = 20,for the right top sigmax = 20 and sigmay = 40,

for left bottom sigmax = 40 and sigmay = 80and last right

bottom sigmax = 100 and sigmay = 150 69

13

34 This picture shows results of smoothing (fitting to a parabola)

for different variable values. In all pictures above we fix l = 200

and τ = 1mm. For the left top image sigmax = 10 and

sigmay = 20,for the right top sigmax = 20 and sigmay = 40,

for left bottom sigmax = 40 and sigmay = 80and last right

bottom sigmax = 100 and sigmay = 150 70

35 This picture shows results of smoothing(fitting to a plane) for

different variable values(for a book image). In all pictures

above we fix l = 200 and τ = 1mm. For the left top image

sigmax = 20 and sigmay = 50,for the right top sigmax = 30

and sigmay = 30, for left bottom sigmax = 100 and sigmay =

150and last right bottom sigmax = 35 and sigmay = 50 . . . 71

36 This picture shows results of smoothing (fitting to a parabola)

for different variable values(for a book image). In all pictures

above we fix l = 200 and τ = 1mm. For the left top image

sigmax = 20 and sigmay = 40,for the right top sigmax = 30

and sigmay = 65, for left bottom sigmax = 80 and sigmay =

100and last right bottom sigmax = 100 and sigmay = 150 . . 72

37 This figure shows the results of both fitting algorithms to-

gether in a neighborhood of 35mm− 50mm for book image . . 74

38 This figure shows the results of both fitting algorithms to-

gether in a neighborhood of 105mm− 250mm for book image 74

39 This figure shows the results of both fitting algorithms to-

gether in a neighborhood of 105mm− 250mm for planar doc-

ument . 75

40 Three dimensional cylinder model. 77

41 Three dimensional cylinder model with noise added to it. . . . 77

14

42 De-warped cylinder model. This is the perfect de-warp model

since no noise is added to it 78

43 De-warped cylinder model. This model is done with 5% of

the points on surface moved. They move in z-axis with a

displacement of 0.01 mm . 78

44 De-warped cylinder model. This model is done with 10% of

the points on surface moved. They move in z-axis with a

displacement of 0.01 mm . 79

45 De-warped cylinder model. 79

46 De-warped points shown in a 2D plot. The lines on both sides

should actually be parallel but due to some skewing affect it

is not. 81

47 De-warping method implemented on different images 81

48 De-warping method implemented on a high skewed document 82

49 This figure shows different dewarping results we obtain through

our experiments. 82

50 Result of de-warping by setting different points 83

15

1 Introduction

This thesis is the second part of collaborating work with Khawar Parvez

on document de-warping using stereo vision. In this part we are going to

talk about the procedure for de-warping the image using 3 dimensional data.

The first part of the thesis,written by Khawar Parvez, covers the topic of 3

dimensional model reconstruction using stereo images.

Digitizing printed materials have become more and more popular in the last

decade due to the increase in the quality of digitizing equipment used and

also due to storage media becoming larger and larger. Traditionally flatbed

scanners are used to digitize documents however as digital camera technol-

ogy advanced and became more common in use, they evolved into another

method to digitize printed materials. Unlike flatbed scanners cameras do not

really guarantee images without skew (Look at Figure 1). This problem how-

ever can be solved by doing some post processing on the image. Correcting

the distortions in an image is called de-warping.

Image correction can be easily achieved if the document in question is pla-

nar(Look at Figure 2). However in the case of curled papers and books, it

is more complicated to correct these distortions. However it is possible to

produce a 3D model using a stereo system. We can then use this 3D model

to reconstruct an image without distortions. The problem in hand then be

described as:

Problem:

Given a pair of images of a document taken by two cameras with different

viewpoints, points in 3D can be reconstructed. Using these 3D points a

triangulated mesh can be built to approximate the 3D document surface.

From this approximation to the surface we can produce a restored image as

it would appear in its planar format.(Look at Figure 3)

Figure 1: This figure shows an image of a book taken by one of the cameras
in the setup. The lines are drawn to show the curl in the text of the book
image.

Figure 2: This figure shows an image of a planar document. The lines are
again drawn to show that there is no curl in this image

17

Figure 3: This figure shows the problem addressed. Left image shows the
input picture and right picture shows the aimed output.

In solving this problem we use the method devised in [3]. This method

as explained in detail in Section 5 uses a conformal mapping which preserves

the angels between 3D and 2D meshes. The difference between our approach

and the approach in [3] is the methods we use to build 3D models of docu-

ment surfaces.

After giving a brief introduction to the problem in hand, we want to give first

a brief system overview and explain which parts will be explained in detail

in this thesis.

System Overview:

As viewed in Figure 4 our system consists of 8 different steps. The steps

up to separation of pages include the methods used for constructing the 3D

model of the document surface. The steps after focuses on the actual de-

warping problem.

In this thesis we address the parts matching, smoothing, separation of pages,

dewarping and deskewing . We first want to give a brief explanation of each

step we address in this thesis and make the reader familiar with the topic.

Matching:

This is the problem of finding correspondences in both images. By correspon-

dences we mean corner points on each image. The problem is given a corner

point in the left image we try to find the same point in the right image.

18

Figure 4: This figure shows the system overview of the whole software.

19

Smoothing:

After 3D reconstruction from given matches as explained in [4] some of the

points that actually should lie on surface lie away due to mismatches. So

we need a way to move these points to the actual surface. The process of

moving so called outliers to the book surface is called smoothing.

Separating Book Pages

This process is finding the middle of a book and separating the book image

into two pages.

De-warping

This is the process of finding the transformation that will give us the un-

curled version of the same image.

De-skewing

This is the process of actually building the image using the transformation

found in de-warping.

The thesis will address these problems by first giving a detailed problem

explanation and then explaining the approach we devised to solve it. Sec-

tion 2 will cover the matching and will be followed by the Section explaining

smoothing. Section 4 addresses the problem of separating pages whereas Sec-

tion 5 will explain the de-warping method. After that we will describe our

de-skewing approach in Section 6. These sections will only consist of theo-

retical part whereas we have Section 7 on explaining some of the experiments

we have devised and will in detail explain all the results we reached.

20

2 Stereo Matching

In this section we cover the problem of stereo matching. First we are

going to give a brief summary to the work done by Khawar Parwez. Section

2.1 will cover the stereo system that we have constructed and the rectification

process done to images. After that we will in detail address the matching

problem and then explain our approach to it.

2.1 Stereo System and Rectification of Images

A stereo system yields two different images of the same view taken from

different angles. These different views enable us to build a 3D model for the

given document surface.(Look at Figure 5 for the stereo system) To build a

3D model from a stereo camera system we need to first find correspondences

between two pictures. This process is called matching. Matching means

finding the exact location of one point in 3D space (a point on book surface

for example) in both images. Instead of trying to find matches in input images

we decide to preprocess it so that solving the matching problem becomes

easier. This preprocessing step is called the rectification of input images.

Rectification is the process of projecting both images to a reference frame

so that we have an alignement in the y − axis of both images(see Figure 6).

This can be explained as:

Let h(u) be the transformation for our rectification (u = (x, y) be a pixel in

an image) and also let f(xf , yf) be a point in left image and g(xg, yg) be the

corresponding point in right image.Then:

fh = h(f) = (xhf , y
h
f) and gh = h(g) = (xhg , y

h
g)

Figure 5: Our stereo system for stereo view. Both cameras covers the same
view thus enabling us to get a good 3D model

.

The rectification impose on y − axis of both f and g that:

yhf = yhg

As can easily seen from this equation this will enables us to make a search for

matches only in the x− direction. For further details on how to implement

this transformation please look at [4].

2.2 Matching Problem

The matching problem is to find point correspondences between two

pictures taken with different cameras on different views. This problem can

be seen as finding correspondences between the two pictures. In more formal

terms we can define the problem as:

22

Figure 6: This figure shows an image pair taken by our stereo sytem and their
rectified versions. The top images are the original images and the bottom
pair is the rectified versions.

Problem:

Let f = (xf , yf) be a point in the image taken by our left camera of the

system. The matching problem is to find the exact point g = (xg, yg) in the

image taken by our right camera that corresponds to the same point as f .

Since doing it pixel by pixel will not be conventional we redefine the problem

from point matching to block matching. This can be explained as:

Let f = (xf , yf) be a point in the image taken by our left camera of the

system then we define a block γf as a set of all points with p = (xp, yp)

|xp − xf | < dx and |yp − yf | < dy where dx and dy is distance given in

pixels.Now we try to find a block on γg right image with the same size as γf

that minimizes a similarity measure. The center of block γg (g = (xg, yg)),

minimizing the similarity measure, is the correspondence of f = (xf , yf).

Now our problem becomes matching the whole box rather than a point with

23

Figure 7: This figure shows an example of matching blocks taken from dif-
ferent images. Red rectangle is the point we try to match. Here dx = 1 and
dy = 2

boxes on the right image.Figure 7 shows a matching block pair taken from

different images. This method however forces some properties on the points

to be used for these blocks. These are:

1. These points should be easily detected on both pictures.

2. These points should have a high difference in both contrast and bright-

ness from neighboring points.

For this purpose as explained in [4] we are using some feature points extracted

by Harris Feature Extraction Method [5](see Figure 8). This method,

as explained in detail by [4], returns us corners on the source image, which

satisfy both of the properties above. So, basically we first define some edge

points on one of the images and then try to find the corresponding images

in the stereo image. Our approach is defined in detail in the next section.

Figure 9 shows an example for matching.

24

Figure 8: This is an example of feature points returned from Harris Feature
Extraction Method. As you can see they are the best approximations to the
corners of letters

Figure 9: This figure shows parts of images taken by the stereo system. The
white boxes on the left image shows the Harris feature Points. The white
boxes on the right image shows the matches of these feature points

2.3 Our Approach

After finding the corners on the source image, we again divide the match-

ing algorithm into two steps. The first step tries to guess a mean value for

the displacement vector in x − axes of two images. By displacement vector

what we mean is:

Let f(xf , yf) be a feature point in left image and g(xg, yg) be its exact match

in the right image. Then the displacement vector is d =

[
dx dy

]T
with

dx = xf − xg and dy = yf − yg.

However as explained in Section 2.1 our images are already rectified so usu-

ally dy = 0. In this first step what we get is an estimation to the mean of all

displacement vectors. This can be viewed as:

dm =


∑n

i=1 dxi

n∑n
i=1 dyi

n

 n is the number of all feature points

After estimating a global displacement vector we can actually go to the next

step of our algorithm and find the exact matches. In our matching algorithm

we need prediction points to begin our search with and we use the global

25

displacement vector to find these prediction points. We can actually use

an approach like this since we have a smooth surface and the displacement

vectors for each feature point does not really differ very high from this mean

value. The next step will be to find the exact matches using the predicted

pixels as starting values.

2.3.1 Determining the Displacement Vector

For this purpose we are actually using a software library devised by

Prof. Thomas Breul. This software named RAST(Recognition by Adaptive

Subdivisions of Transformation Space) will be used to recognize the book on

left and right image and then to give us the displacement vector between

them. To do this, a first step is to run a canny edge detection on both

images so that we can detect the books inside our pictures(see Figure 10).

After this step, we only calculate the required displacement vector by feeding

these corners to the software and in return we find the required displacement

vector.

In brief what this software actually does is to first finding the canny edges

on both pictures and then try to match these edges on both images and find

a median value for the displacement vector of each match from one picture

to another.For more information on how this software and algorithms work,

please see [6]

2.3.2 Finding the Matches

For finding the corresponding matches as explained in [4], we are using a

block matching connected with a discrete gradient descent method (for more

information on the discrete gradient descent method please refer to Section

A.3). This method is proposed in [7] and is based on matching blocks in the

26

Figure 10: This figure shows an image pair taken by our stereo system and
images of edges detected by RAST.

Figure 11: This figure shows an image pair taken by our stereo system. In
the left picture black cross shows a feature point to be matched. In the right
picture the red cross shows the predictor location whereas the yellow cross
shows the location of exact match.

27

surronding of the expected positions of an interest point. As explained in [4]

after an extentive testing we choose to use sum of square differences(SSD)

of pixel values as our similarity measure between blocks. To summarize the

method basically we represent images as fleft(x, y) as a point in left image and fright(x+

dx, y + dy) as our candidate for the corresponding point in the right image.

We define our block as a set of pixels υ so the block SSD becomes:

∑
(x,y) ε υ

(fleft(x, y)− fright(x+ dx, y + dy))
2

So by calculating the corresponding similarity measure for all points and us-

ing gradient descent algorithm to find the local minimum of SSD, we find

matches. As explained in [7], this method is prone to contrast and image

noise caused by movement. In our case, on the other hand, these effects

are not as much of a concern since our images usually have no or very little

contrast change and we have no skew caused by motion since our images

are being taken without any motion. One of the problems we suffer from is

the similarity measure being the same when blocks near our starting point

on both directions tend to look alike (See figure 13 below). To solve this

problem, we have increased the block size so that these redundancies can be

overcome. This really slows the algorithm since more computational work is

needed to find an exact match but is actually the best solution to solve this

problem. However we have to take into account that larger block size can

mean a larger skew, which is a disadvantage of this method.

To produce predictors, as explained in Section 2.3.1, we first estimate a dis-

placement vector dm = (dx, dy) between the images of stereo image pair.

28

Figure 12: This figure shows an image pair taken by our stereo system.
The left picture shows the picture where we extract featurs and features are
shown by white squares. The right picture shows the matching points in
white squares.

After this for each feature point extracted pext = (xext, yext) we create an

initial prediction point ppred as:

ppred = (xext − dx, yext − dy)

To have a view how these predictor points see Figure 11.

Most of the results obtained in planar document cases proved to be quite

good.(see Figure 12 fo an example).

However in the case of spine of a book, this method tends to give a lot

of mismatches. This is due to the fact that on the spine of the book the

images tend to change in shape and skew a lot. Other than that, some of

the points available in one image may not be covered in the next one. As

can be seen from Figure 14 the difference of shape, contrast and skewness

between the two images is too much for our similarity method to comprehend.

29

Figure 13: This figure shows the images taken from both cameras in the case
that same blocks are very near. In this picture, the left side shows the source
image and the right side shows its stereo pair. The blue rectangle shows the
initial start point where the matching algorithm begins its search, whereas
the green rectangle shows the matched point. As easily observed, instead of
going through the yellow line to find the light blue point,which is the actual
match, our algorithm goes through the red line to find the green point which
is a mismatch.

Figure 14: This figure shows the images taken from both cameras for the
spine of a book. The drastical change in shape, curl and contrast in both
pictures can easily be observed

30

This causes our algorithm to find a different local minimum instead of the

matching point and hence the mismatches. To solve this problem we actually

need a new method that takes into account these changes between the two

images. For this purpose, we used the method derived in [8]. This is a

method used for feature tracking in video processing. In this method instead

of supposing simple changes between two images, changes are modeled using

a more complex model such as an affine map. This affine map is used to fit

the image views to each other so that we can actually find a better match.(For

more on the method please refer to [8]).However there are some differences

between [8] and the problem we have. Since we have a stereo system we

have very little noise associated with movement. Other than that, contrast

measure is again not such a high priority. The part that is most useful for us

in [8] is its ability to change the size and orientation of source blocks. This

property allows us to change the source blocks thus enabling to find an exact

match. For our results on experimenting with this new method, please refer

to Section 7.

31

Figure 15: This picture shows an example of a smoothing. The left im-
age shows the model without smoothing whereas the right image shows the
smoothed version

3 Smoothing

In this section we will explain the smoothing problem and methods used

to solve it. After 3D reconstruction we obtain a 3D model of our document

surface. However when we look at Figure 17, we can easily observe that

some of the points are not on the document surface. These points are called

outliers and are a direct result of mismatches. As explained in Section 2

we have devised different methods to solve mismatches problems but we still

need to do a post processing on our 3D model to have a perfect surface model.

To achieve this we have to first detect and then discard or move these outlier

points to document surface. So now we can define our problem as:

Problem: Given a set of 3D points named Ω (which is all the points in our

3D model), we try to find the best fitting surface to this set of points. (see

Figure 15)

In the case of a planar document actually what we can do is just to find the

best matching plane to Ω. However a book surface is not a known geometric

shape and even if we find a model to fit to one book surface(say Ω), we can

not be sure that it will be valid for all different book surfaces. You can have

a visual of this problem by looking at Figure 16. As can be seen from Figure

Figure 16: This figure shows different book surface models. We can see
apparently that the two book surfaces are totally different. This roves that
it is not possible to find a function fitting to all book surfaces.

16 finding a global surface to fit to different book images is a very hard task.

Instead of finding a global surface to all points we decide to use a divide and

conquer method to our problem. This can be defined as:

Let w = (xw, yw, zw) be a point in our 3D model. Then we define a set

containing points that are in a local neighborhood of w as β. The set β

consist of all point in our 3D model given that a point p = (xp, yp, zp) holds

the following equations.

|xw − xp| < σx (1)

|yw − yp| < σy (2)

Here σx and σy are maximum distances from the source point. After finding

all the elements of β we still need to find a fitting surface. However we now

have a smaller neighborhood which lets us to make an assumption.

33

Figure 17: This is a picture of an un-smoothed 3D model. As you can see
outliers are highlighted.

• We can pick an adequate value for both σx and σy so that we have a

surface that an be approximated to linear functions

By using this assumption we will use a linear regression method to find a fit

to set of 3D points β. Having this in mind we began our implementation

of algorithm first by fitting to a plane. In this method we try to find the

best fitting plane to β and instead of moving all points in β to the plane we

only change the location of w to this plane. We do the same operation to

all points in Ω. After trying this method on different images we found out

that fitting to a plane is not suitable for a book surface especially on the

spine. Thus we change our approach to fitting to an applicable surface in-

stead. In both approaches we use RANSAC ”RANdom SAmple Consensus”

algorithm. We have used RANSAC since as explained in [4] we have a much

better performance using it.

34

3.1 Linear Least Squares Method

It is an optimization method to find the best fitting function to a cloud

of data points. This method is used to minimize the square of the distance

between the line and the point on the cloud set. The reason for using squares

of distances is to treat the residuals as a continuous differentiable quantity,

which is not the case when we use absolute differences instead. We have done

two different types of least squares fitting. The first one is to fit to a plane

and the second one is to fit the paraboloid.

3.1.1 Fitting to a plane

In this method we try to find a fitting plane to a given set of three di-

mensional points Pi =

[
xi yi zi

]T
i = 1,, n to a plane with an equa-

tion N.(P − P0) = 0. In this equation N = (Nx, Ny, Nz) is the normal to

the fitting plane and P0 is a point on the plane.The optimum fitting plane

should pass through P0 which is the mean of all points that we want to fit

on the plane thus we first find the mean of all points as:

(xm, ym, zm) =

∑n
i=1(xi, yi, zi)

n

35

So to find the best fitting plane to these points what we need is to solve the

next equation:



(x1 − xm) (y1 − ym) (z1 − zm)

(x2 − xm) (y2 − ym) (z2 − zm)

. . .

. . .

. . .

(xn − xm) (yn − ym) (zn − zm)




Nx

Ny

Nz

 = 0

More on linear least squares fitting can be found on [9]. This system is

a rectangular system and needs to be converted into a symmetric system

which can be easily done by multiplying both sides of the equation with

the transpose of our error matrix AT . After this multiplication, we have a

new matrix B = ATA, which is symmetric and our new equation system

becomes BN = 0. Another specification we can impose on our system is

that ‖N‖ =
√
N2
x +N2

y +N2
z = 1. This results in solution being equal to

the eigenvector of the smallest eigenvalue. The proof of the theorem can be

found in [10]

3.1.2 Fitting to a paraboloid

Near the spine of a book, our estimation of fitting to a plane seems

apparently not so effective. As can be seen easily from Figure 18 a better

choice for a surface is a paraboloid. For this reason, we also try to do a

smoothing based on fitting our surface on a paraboloid.

To solve this problem, first we need the equation of a paraboloid which

36

Figure 18: This picture shows a 3D model for the spine of the book.

looks like f(x, y) = Ax2 + By2 + Cxy +Dx+ Ey + F . In our case, we take

f(x, y) = z. Our residual function looks like:

R2 =
n∑
i=1

(zi − (Ax2
i +By2

i + Cxiyi +Dxi + Eyi + F))2

After computing the partial derivatives on all unknowns A,B,C,D,E, F we

have a system that looks like:

∂R2

A
= −2

n∑
i=1

(zi − (Ax2
i +By2

i + Cxiyi +Dxi + Eyi + F))x2
i = 0

∂R2

B
= −2

n∑
i=1

(zi − (Ax2
i +By2

i + Cxiyi +Dxi + Eyi + F))y2
i = 0

∂R2

C
= −2

n∑
i=1

(zi − (Ax2
i +By2

i + Cxiyi +Dxi + Eyi + F))xiyi = 0

∂R2

D
= −2

n∑
i=1

(zi − (Ax2
i +By2

i + Cxiyi +Dxi + Eyi + F))xi = 0

∂R2

E
= −2

n∑
i=1

(zi − (Ax2
i +By2

i + Cxiyi +Dxi + Eyi + F))yi = 0

∂R2

F
= −2

n∑
i=1

(zi − (Ax2
i +By2

i + Cxiyi +Dxi + Eyi + F)) = 0

37

Figure 19: This picture shows an over estimated curl in the spine of the book.

Writing these equations in a matrix format and using the fact that this is a

Vandermonde matrix (For more information on this conversion please refer

to 2) we can actually build our solution system as:



x2
0 y2

0 x0y0 x0 y0 1

x2
1 y2

1 x1y1 x1 y1 1

.

.

.

x2
n y2

n xnyn xn yn 1





A

B

C

D

E

F


=



z0

z1

.

.

.

zn


Solving this equation using numerical methods will give us the best fitting

paraboloid to our points. However as can be seen from Figure (19) near

the spine of a book a paraboloid can have an overestimated curl on both

2http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

38

directions. This also means that a paraboloid has a Gaussian curvature that

is not equal to 0. This is not acceptable since book surface as an applicable

surface has the property that its Gaussian curvature becomes zero so we need

to change our model to have a better fit to the book surface. We already

know that terms D, E and F have very little effect on the curl and is only

showing direction of the plane so we can ignore them. However the terms A,

B and C affect the curl. To get rid of the least effecting direction for the curl

we build the matrix:  A C

C B


Unlike matrix solution in this case we do not take the eigenvector associated

with the minimum eigenvalue(λmin) but the eigenvector associated with the

maximum eigenvalue(λmax). This in return will give us a solution minimizing

the effect of low curl direction and maximizing the high curl direction. To

find the new values associated with A, B and C:

znew = λ2
max(xmax

 x

y

)2 +Dx+ Ey + F

where xmax =

[
a1 a2

]T
is the eigenvector associated with λmax. From

this we have:

A = a2
1λ

2
max

B = a2
2λ

2
max

C = a1a2λ
2
max

(3)

39

This method explained above is used for our paraboloid model to look more

like an applicable surface thus having a better fit to our book surface.

3.2 RANSAC

After this brief introduction to the fitting methods we use, we want

to emphasize on our implementation of a RANSAC algorithm for locally

smoothing 3D points. Before giving details of our implementation, we want

to give a brief introduction to the general RANSAC algorithm.

3.2.1 General Algorithm

This is an algorithm to fit data into models robustly in the presence of

many data outliers.This algorithm was first proposed by Fischler and Bolles

in [11].

The algorithm tries to estimate a set of parameters (say ai for i = 1, ..., n)for

a function and then fit the data according to these given parameters. There

are two rules that data has to hold for RANSAC to be applicable. These are:

• The parameters can be estimated from n data items

• There must be at least n+ 1 data items in total

For the RANSAC algorithm we define a set of points that holds both con-

ditions above as η. η has m number of elements. The general algorithm for

RANSAC is very easy. The algorithm looks like:

1. Select k points randomly where k > n and k < m

2. Estimate parameters a1, ..., an for your fitting function

40

3. Find the total number of points(say %i where i is the number of iter-

ation) whose distance from the given parameterized surface is smaller

than a given threshold distance τ by the user.

4. Check if the number of points (%i) is larger than the largest number

(%best) so far. If it is larger change the current %best to the new solution

and store the parameters for the best solution so far.

5. Do the same five steps above for l iterations(l given by user)

6. Return the best solution(parametrization corresponding to %best) found

by the algorithm as the best fitting solution.

3.2.2 Our implementation

We have two different parametrization for our RANSAC algorithm. These

as explained in 3.1 are plane fitting and paraboloid fitting. Since we are using

a local neighborhood of points for our algorithm we first want to define some

of the variables we use in our RANSAC. First we run the RANSAC on each

point w = (xw, yw, zw) and for each point w we define a local neighborhood as

a set β with points from the global set that holds the requirements explained

in Section 3

For plane fitting we need three parametrization variables which means in

each iteration of our RANSAC we pick three points from our set β ran-

domly. From this three points we find the corresponding plane by using a

least squares fitting.Our least squares fitting method returns us a normal to

the plane N . After that for all points in β we find the distance between the

point and the plane fitted to these picked three points. We calculate it by

using the formula:

Dxi
= N(x0 − xi)where xi is a point in β, x0 a point on plane(any of three

41

Figure 20: This picture shows the process of moving an outlier through the
camera projection line to the intersection with the fitting plane.

picked) and N is a normal to plane.

After finding the total number of points(say %j)for this iteration that holds

Dxi
< τ . We check this number with the largest value for number of points

(say %best) and if it is bigger we store the parametrization values and change

%best otherwise we discard both. After doing the same operation for l itera-

tions our algorithm returns the parametrization variables for %best. After this

we move the point w to the point where the projection line and the plane

returned by RANSAC intersects.(Look at Figure 20)

In the second method to parametrize a paraboloid we need six different vari-

ables so the first change in RANSAC is the number of points picked randomly.

We pick six points and from them again using our linear regression model we

find the best fitting paraboloid. After that to calculate the distance we use

the following equation:

Dpi
= Ax2

i + By2
i + Cxiyi + Dxi + Eyi + F − zi where pi = (xi, yi, zi) is a

42

point in β and A,B,C,D,E and F are the parameters for the paraboloid.

After finding the total number of points(say %j)for this iteration that holds

Dpi
< τ . We check this number with the largest value for number of points

(say %best) and if it is bigger we store the parametrization values and change

%best otherwise we discard both. After doing the same operation for l itera-

tions our algorithm returns the parametrization variables for %best. To move

points to the fitting surface we only change the value of zw to

zw = Abestx
2
w + Bbesty

2
w + Cbestxwyw + Dbestxw + Ebestyw + Fbest where w =

(xw, yw, zw) and Abest, Bbest, Cbest, Dbest, Ebest and Fbest are the parameters for

the paraboloid returned by RANSAC.

This method is used because a line and a paraboloid intersects on more than

one point and we do not know which point will be the solution of our prob-

lem.

43

4 Separating a Book Image

In this section we will address the topic of separating a book image into

its pages. This method is needed since in our book images it is easier to

de-warp them when we separate the image into its pages. In the first section

we will give the explanation of our problem. In the next section I will give

details about our approach and how it works.

4.1 Problem

We are trying to find the spine of a book in an image. The spine of the

book is the connection between two consecutive pages in a book(look Figure

21). This particular part of the book is very important since it is the place

where the highest amount of curl is present. Other that this we have the

problem that it is not possible to create a model of this particular place since

it is totally white and no features can be detected on images however this

place particularly contains important depth knowledge that must be taken

care of. Instead of dealing artificially created feature points we separate the

book image into two pages and also add the feature for the user to choose

the page he wants to de-warp only.

4.2 Method

For finding the location of the spine of the book inside the image we first

have to extract the book from the image. The method we use to achieve this

purpose is explained in [4]. This method returns us the four corner points of

the book in the image.There are however some assumptions that has to be

made before we explain our method. These are:

• The shape of the book in image should be approximated as a rectangle

• Perspective effects on the image should be minimal.

These assumptions usually hold in the case that we have taken the photo

from a distance not too near to the book or the book lies on a surface that is

perpendicular to the camera. In our images both of these rules hold. After

this we should easily declare that the spine of the book should lie somewhere

in the middle of our extracted image. To find the middle point we find the

intersection point (Pintersect = (xi, yi)) of diagonals from the corner points

of the extracted image.(See Figure 21)After this step we define a sub image

neighboring Pintersect. This neighborhood can be explained as:

All pixels (pj = (xj, yj)) on extracted image with |xj − xi| < α pixels

After some experimentation we found out that 50 is a good estimate for α.

After this we again use RAST software devised by Prof. Thomas Breuel and

explained in [6] to find the exact location of the spine. This time the software

works in a two step process. First we find canny edges on the extracted

image(Look at Figure 10). From these canny edges then software builds up

lines. After finishing execution this software returns us line segments and

it is now our duty to pick which one is the spine of the book. For this

purpose after experimentation with different images we found out that the

longest segment actually turns out to be the spine of the book. This line

segment is then modeled by a point (pline = (xl, yl))and the slope of the line

m. After finding these values we just check for each pixel in the image if it

lies on the right or left of this line. This can be done easily by using the

below equations: A point P1 = (xP1 , yP1) lies on the left side of the line if

mxP1 + (yp −mxp) < yP1 and in the right otherwise.

By applying this equation on every pixel of the image we have now separated

the book in the image into its pages.(Look at Figure 22)

This method however is not actually very robust. There are some cases in

45

Figure 21: In this figure we have all three steps of separation of a book image
together. In the first step we find a point near to the spine by intersecting
the diagonals from the corner of the book. In the second image we cut out
a neighborhood around the intersection point.The third picture shows the
longest vertical line returned from the RAST algorithm

which separation gives unexpected results. These cases usually include spines

where the middle point is far more than 50 pixels away from the spine. In

these cases we have usually a thick book in which you try to separate pages

near to the cover or near to the last page of the book. You can see some

examples for these kind of book images and their separation results in Figure

23.

46

Figure 22: This picture shows the result of the page separation of the book
image in Figure 21.

Figure 23: This picture shows a case in which our separation algorithm fails.
The reason is the intersection point of the diagonals is not very near to the
spine thus the image separated from the original image does not include spine
in it.

47

5 De-warp

Digital Image De-warping is the technique that deals with the geometric

transformations on an image. Interests on this topic dates back to 1960s.

Since that time it has found its use in different areas of image processing

from medical imaging to computer vision. This technique becomes popular

as our computing power becomes bigger and thus making it possible to apply

this to images in a considerable time. This also leads to its use in document

capturing area thus letting us to create planar documents using a basic dig-

ital camera instead of a flat bed scanner. In this section we are going to

discuss on a de-warping method that will be used to recover book images

using a stereo system. This method is actually proposed in [3]. We have only

implemented the same method to solve a different problem than in [3]. In [3]

a structured light device is used to build 3D model whereas we have used a

stere imaging system. The approach is used to solve crumbled pages whereas

we try to use the same method on book images.

We first give a brief definition of the de-warping problem and then every

detail will be cleared in the next subsections.

Problem:

Given a set of 3D points Ω3D modeling the surface of a book and a triangular

mesh for these points say Θ, we try to find a mapping f that maps these

3D points set Ω3D to a 2D points set Ω2D preserving all the angles of the

triangles in the triangular mesh Θ.

In mathematical terms we can describe the problem as:

Ω3D = p1,, pn where p = (x, y, z)

Θ = 41,,4m where4 = (pa, pb, pc) are the corners of each triangle and

(pa, pb, pc) ∈ Ω3D

Ω2D = T1,, Tn where T = (x′, y′)

The mapping f is f(p) = T where f is a mapping from R3 → R2 preserving

all inner angles of the triangles 41,4m ∈ Θ.

Before explaining de-warping method in detail we first want to emphasize

some of the theoretical background needed for the method. The topics in-

clude conformal mapping and Delaunay triangulation. These are only brief

explanations however references are given for the avid reader to learn more

about the topic.

5.1 Conformal Mapping

A conformal mapping is a transformation w = f(z) that preserves angles.

Definition:

Given a set of points ρ and let z be a point in ρ, if our mapping f preserves

the angles between all curves passing through z then f is conformal on z. If

this property holds ∀z ∈ ρ our mapping is conformal in ρ

There are two important properties of a conformal mapping w = f(z) where

z is a complex number(z = x+ iy).

• It is an analytical function which has a nonzero derivative for all the

points z in ρ. This meaning ∂f
∂z
6= 0

• Conformal mappings have to satisfy both Laplacian equation and Cauchy

Riemann equations.

Laplace Equation

∇2f =
∂2f

∂x2
+
∂2f

∂y2
= 0

Cauchy-Riemann Equations

∂f

∂x
+ i

∂f

∂y
= 0

49

This property actually helps us since the idea of our de-warping method

is to construct an angle preserving mapping. For detailed information on

conformal mapping please refer to 3

5.2 Delaunay Triangulation

As described in the problem we need a triangular mesh for 3D point

set Ω3D. To achieve this task we use the well known Delaunay triangulation

method. This method dates back to the paper written by Boris Delaunay in

1934.[12]

The approach to the triangulation is that we have no points X on a plane that

lies in the circumcircle of any of the triangles in our triangles set Θ. Thus

leading to a maximization of the minimum angle of all the angles of triangles

in our solution set. One of the main results of this feature is that we have

no sliver triangle in our solution set. A sliver triangle has the property that

the difference between the angles of the triangle are very large. (look figure

24) For a Delaunay triangulation to be unique it has to hold the following

properties for an n-dimensional space.

• No n+1 points should lie on the same hyperplane.

• No n+2 points should lie on the same hypersphere.

In the case of n being 2, no three points shall lie on the same line and no

four points shall lie on the same circumcircle. For a proof of these two

properties please refer to 4

Since implementation of this triangulation is done using the qhull library we

will not describe the algorithm for the triangulation but how we use the tool

instead. For making the triangulation we use the points extracted by Harris

3http://mathworld.wolfram.com/ConformalMapping.html
4http://en.wikipedia.org/wiki/Delaunay triangulation

50

Figure 24: Example of a triangulation done on the image

Feature extraction method [5]. Using these points we can build triangles and

these triangles will be used to cover the 3D model. For more information on

qhull and its implementations please refer to 5 or [13].

5.3 De-warping Method

After making a brief introduction of theoretical background we now want

to emphasize on method to de-warp images. As already explained the method

we use for de-warping is proposed in [3]. In this method the first step is to

create a three dimensional model of the given document(explained in detail

in Section 2 and 3). After this step we have to find a suitable triangulation

for the given three-dimensional model points. For this purpose we are using

a Delaunay triangulation method explained in 5.2. The de-warping method

is based on a conformal mapping (explained in Section 5.1) between the

generated 3D points to 2D points as given in the problem explanation. One of

5http://www.qhull.org

51

the most important property of this mapping is that it does not preserve the

lengths and areas of the triangles in the triangular mesh so after the solution

there should be a resizing of given parameters. This resizing however does

not guarantee preserving the length and area. It is only an approximation to

the size of the document by finding its size on original image and multiplying

this value with the resulting 2D points.

The reason that a conformal mapping should preserve angles in case of a book

surface is that it is an applicable surface and that applicable surfaces have

Gaussian Curvature equal to zero. This means this surface can be mapped

to a plane without loss of any data. By taking this property into account we

hoped to get uncurled versions of our source images.

5.4 Method

Given our de-warping problem as in Section 5 to find conformal mapping

first consider we have represented the set of 3D points (Ω3D) by a vector

κ(u, v), parametrized by u and v, with components or x, y, z. This is a

R3 → R2 mapping and conformal on u− v plane iff:

∇2κ =
∂2κ

∂u2
+
∂2r

∂v2
= 0

where ∇2 is the Laplacian operator on κ.

Since our input is a set of 3D points what we actually seek is an inverse

mapping from (x, y, z) → (u, v). Now consider another function say g(x, y)

on 2D. This function returns a 2D point (u, v). In 2D case we know that

a conformal mapping has to satisfy the Cauchy-Riemann equation (look at

Section 5.1) so:

∂f

∂x
+ i

∂f

∂y
= 0

52

Figure 25: This figure shows the parametrization done from mathbbR3 → R2.
All the vectors N , X, Y , A and B can be visualized. The corresponding
triangle in u− v plane is also showed.

from this:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

This means we can now reduce the R3 → R2 mapping to a R2 → R2. The

only problem left is to find a way to parametrize the 3D triangles in u − v

plane.

Parametrization:

As can be seen in Figure 25 A and B are two sides of a triangle(4a) in Θ.

We need to represent a local plane ς for 4a and for that reason we need to

find a normal(N) to plane ς and a point (P0) on ς so that we can build the

equation for ς:

N.(P − P0) = 0

53

To find a normal to ς we already have two vectors that lie on ς,A and B. By

applying a cross production on them and dividing the resulting vector with

its length we find a nor mal to ς, say N .

N =
AxB

|AxB|

After finding the normal to ς we need to change the parametrize the 3D points

to their values in u− v plane. To achieve this we take one of the corners in

4a as origin and then find the unit vectors in both u and v dimensions. We

name these unit vectors as X in u direction and Y in v direction. These are

calculated as:

X =
NxB

|NxB|

Y =
XxB

|XxB|

After finding unit vectors X and Y on ς it is now very easy to parametrize

the 3D points to 2D. Each point in 2D system is represented as p =

x′, y′. All these points build up a new mesh M = pi∈[1n],4j∈[1m]
where pi are

parametrized 2D points and 4j represents the new triangles resulting after

parametrization. For this new parametrization we define two new sets.These

are Ω2Dpar with n elements and Θ2DPar with m elements. The parametriza-

tion done on each Tj ∈ Θ2DPar with 4j = Cj1, Cj2, Cj3 where Cji is a vertex

in 4j can be defined as:

C1 = (x′1, y
′
1) = (0, 0)

C2 = (x′2, y
′
2) = (B.X,B.Y)

C3 = (x′3, y
′
3) = (A.X,A.Y)

54

Now we can define a mapping between Ω2Dpar and Ω2D(as explained in

Section 5). An element of Ω2D is q and it is parametrized as q = (u, v). So our

mapping will be from p(x′, y′)→ q = (u, v). For notation simplicity we take

p = (x, y) from now on. As explained in [3] a triangle to triangle mapping

has a unique affine transformation between original and destination triangle.

An affine mapping g(p) → q with p = (x, y) ∈ Ω2Dpar and q = (u, v) ∈ with

each triangle 4(x1, y1)(x2, y2)(x3, y3) ∈ Θ2DPar described by its vertices:

f(x, y) =
AREA(4(x, y)(x2, y2)(x3, y3))(u1, v1)

AREA(4(x1, y1)(x2, y2)(x3, y3))

+
AREA(4(x, y)(x3, y3)(x1, y1))(u2, v2)

AREA(4(x1, y1)(x2, y2)(x3, y3))

+
AREA(4(x, y)(x1, y1)(x2, y2))(u3, v3)

AREA(4(x1, y1)(x2, y2)(x3, y3))

Before applying the Cauchy-Riemann equations on our affine mapping we

want to give the formulation of the AREA function. Given41 = ((x1, y1), (x2, y2), (x3, y3))

we can formulate the area of this triangle as:

AREA(4((x1, y1), (x2, y2), (x3, y3))) =
1

2!


x1 y1 1

x2 y2 1

x3 y3 1


which can be written as:

AREA(4((x1, y1), (x2, y2), (x3, y3))) =
1

2!
(−x2y1+x3y1+x1y2−x3y2−x1y3+x2y3)

Now we compute the partial derivatives of our mapping function:

∂f

∂x
=

(u1, v1)(y2 − y3) + (u2, v2)(y3 − y1) + (u3, v3)(y1 − y2)

2AREA(4(x1, y1)(x2, y2)(x3, y3))

55

and

∂f

∂y
=

(u1, v1)(x2 − x3) + (u2, v2)(x3 − x1) + (u3, v3)(x1 − x2)

2AREA(4(x1, y1)(x2, y2)(x3, y3))

Now we define the Cauchy-Riemann equations for the mapping obtaining a

linear Equation system. For u we have:

∂u

∂x
=

(y2 − y3) + (y3 − y1) + (y1 − y2)

2AREA(4(x1, y1)(x2, y2)(x3, y3))

∂u

∂y
=

(x2 − x3) + (x3 − x1) + (x1 − x2)

2AREA(4(x1, y1)(x2, y2)(x3, y3))

and for v we have:

∂v

∂x
=

(y2 − y3) + (y3 − y1) + (y1 − y2)

2AREA(4(x1, y1)(x2, y2)(x3, y3))

∂v

∂y
=

(x2 − x3) + (x3 − x1) + (x1 − x2)

2AREA(4(x1, y1)(x2, y2)(x3, y3))

Before constructing the equation system we define for triangle4((x1, y1), (x2, y2), (x3, y3))

∆c1 = (y2 − y3),∆c2 = (y3 − y1),∆c3 = (y1 − y2),∆b1 = (x2 − x3),∆b2 =

(x3 − x1),∆b3 = (x1 − x2)

Now we can write our equation system for one triangle as:

1

2AT

 ∆c1 ∆c2 ∆c3 −∆b1 −∆b2 −∆b3

∆b1 ∆b2 ∆b3 ∆c1 ∆c2 ∆c3





u1

u2

u3

v1

v2

v3


=

 0

0



56

The above equation is valid for one triangle but we need to solve it for all

triangles in Θ2DPar. This in return should give us the values of all q = (u, v)

in Ω2D. This can be written as an equation system like AQ = 0 where

Q =

[
Ui Vi

]
.Here Ui stands for all ui in Ω2D and Vi for all vi in Ω2D. Here

again ∆ci and ∆bi defined as above.

Xij =


∆bi

2ATj
if it is a corner point;

0 otherwise.

Yij =


∆ci

2ATj
if it is a corner point;

0 otherwise.

Now writing the A matrix for all triangles in Θ2DPar what we have is:

 Yij −Xi(N+j)

X(M+i)j Y(M+i)(N+j)


 Ui

Vi

 =

 0

0


The above equation system is an underdetermined one meaning there are

more equations that the number of unknowns. This causes us to have in-

finitely many solutions with different orientation and size for the Ω2D. We

have to pick a solution between these. To find a unique solution, we have to

set some of the points in Q to predefined constants. This makes sure we pick

a unique orientation for our solution set Ω2D. In our case fixing the values

of two constraints will give us a unique solution. We ,rather for calculation

purposes, pick to set the values of the first two entries in Ω2D to (0,0) and

57

(1,1). This constraints cause our equation system to change and become

AnewQnew = Result where:

Result = −
[
Xl Xm XN+l XN+m

]


Ul

Um

VN+l

VN+m


and Anew with the first two columns and columns at n and n + 1 removed

from A. We also remove the elements in first row and on nth row from Q

to get Qnew. We are now left to solve the system AnewQnew = Result. One

of the most important features of Anew is that it only has 6 nonzero entries

per row. This means Anew is a sparse matrix. A sparse matrix is a matrix

that mainly consists of zeros. This property is very useful in computation

of matrices since we can take into account that most of the entries are zero

and have no or very little effect on our solution. Other than this there are

actually a lot of implementations for linear sparse matrix solvers and we can

use one of these for our system.

After a thorough research we decide to use so called CHOLesky MODification

toolbox 6(all following papers define the algorithms of CHOLMOD [14][15]

[16][17][18]) to solve the equation system. This toolbox uses the so called

Cholesky factorization to factor out the matrix. This factorization however

factors out a symmetric matrix(which is usually not the case for us) into its

lower left matrix and its transpose. To achieve this factorization we must

build a symmetric matrix and we do this by multiplying our matrix by its

transpose. . We cannot find a Cholesky Factorization for Anew since it is not

symmetric. However we already know from our basic linear algebra courses

6www.cise.ufl.edu/research/sparse/cholmod/

58

that we can actually obtain a symmetric matrix from a rectangular matrix

by multiplying it with its transpose. (ATnew ∗ Anew) We also know that in a

linear system when we multiply left side with a matrix we should multiply

the right side also with the same matrix thus causing our system to change

from:

AnewQ = Result

to:

ATnewAnewQ = ATnewResult

After doing these modifications our system is now ready to be solved

with the toolbox. The Qnew contains the values of all q = u, v ∈ Ω2D

meaning the de-warped 2D points. After finding the values for all elements

of Ω2D we only need to build the image which will be explained in the next

section.

59

6 De-skew

This is the process of using the input image to build an uncurled ver-

sion of the same image. For this purpose we need a mapping between the

source points and our de-warped points. The source points are the points

extracted by Harris Feature Extraction and for the set ΩHarris, whereas des-

tination points are the de-warpep points and are contained in the set Ω2D

(look at Section 5.3). This R2 → R2 mapping is actually very easy to find

since we already know a mapping between 3D points (Ω3D) and de-warped

2D points(Ω2D)(look at Section 5.3). We also know the relationship between

the 3D(Ω3D) and source points on original image (ΩHarris) so actually we

only need to connect these two correspondences. We have a 3D point, say

(x1, y1, z1), and its corresponding point on the source image (k, l). As ex-

plained above we can actually build a mapping from (k, l) → (u, v) where

(u, v) ∈ Ω2D . For this purpose we use a triangle to triangle mapping. We

can actually do such a trick because we can easily build the corresponding

triangular mesh for both Ω2D and ΩHarris. We define the triangular mesh

sets as Θ2D for Ω2D and ΘHarris for ΩHarris.

Let 42D be an element of Θ2D with corners,

(u1, v1)(u2, v2)(u3, v3). The corresponding triangle in ΘHarris is 4Harris with

corners

(k1, l1)(k2, l2)(k3, l3). So our mapping function between these two images look

like:

f(k, l) =
AREA(4(u, v)(u2, v2)(u3, v3))(k1, l1)

AREA(42D)

+
AREA(4(u, v)(u3, v3)(u1, v1))(k2, l2)

AREA(42D)

+
AREA(4(u, v)(u1, v1)(u2, v2))(k3, l3)

AREA(42D)

where (k, l) is the corresponding pixel of (u, v) in the source image. We

solve this equation for all the image points that lie in 42D thus finding their

position on the source image. From the source image position by the use of

bilinear interpolation (see A.1) we found the corresponding RGB value for

(u, v). To find which points lie inside the triangle 42D we use the method

explained in Section A.2.

61

7 Experimental Results

This section addresses experiments that were done on our system. Since

there are different parts in our system, we have tested each of them sepa-

rately. Each experiment is geared towards understanding how to improve

the performance of our system. We have divided the testing into three dif-

ferent parts. The first part will show some results of our experiments on our

stereo matching approach. The second part will be a comparison between

the two different smoothing approaches. The third and last section will show

the results of our de-warping method. In each section, we first define our

experiments and our data sets. After this, we will explain and discuss the

results.

7.1 Experiments on Stereo Matching

As explained in Section 2, matching is the process of finding correspon-

dences between two images of the same object. We have already given a

brief idea about our approach to solve matching problem in section 2. The

experiments are divided into two parts. First we experimented on planar

documents, and then continue our experiments on book images.

7.1.1 Experiments on Planar Documents

These experiments are designed to prove that our approach is working

well under the basic case in which we try to match two images that has very

little skew or disorientation between them(see Figure 28). Since there is no

or very little difference in terms of the contrast, size and shape between two

images, we are expecting almost perfect matching. The only problem that

can occur in this case is for blocks that are very similar to be of equal dis-

tance from our starting point (Look at figure 13). First we represent some

of the results from small parts of the images. As can be seen from these

images(Figure 26), all matches are perfect and as expected, our algorithm

works very well. However, if we look at another part of the same image where

we have similar blocks that actually lie very near to each other, our algorithm

can not differ between these two(see Figure 13). For solving this problem, we

try to impose larger block sizes and as can be seen from Figure 13 we have

succeeded in solving this problem. However this very simple solution causes

us to lose a lot of time since this means we have a higher computation time

for our similarity measures. This solution can cause mismatches in images

with a higher skew since larger blocks can have different contents on the cor-

respondences.

Other than this, as can be seen in Figure 17 number of outliers in the whole

image is very low and can be easily smoothed out by using one of our smooth-

ing algorithms. This test proves that with a good initial guess, we can ac-

tually have an almost perfect 3D model of a plane paper using this method.

However, I have to mention that since our initial starting point is just a guess

based on the median displacement vector (look at Section 2.3.1), we have to

take care of the variance of the displacement vectors. This means, in the case

of a large variance for our displacement vectors, we have to take into account

that our initial guess could be somewhere away from the exact point and in

that case we have to add more prediction points so that our algorithm can

find the exact match . However this can also be problematic since we can

again have the same problem with similar blocks. This can mean a higher

rate of mismatches.(see Figure 27).

63

Figure 26: Parts of a planar document with perfect matching between two
images

Figure 27: Images of a planar document that has a high depth change and
skew

64

Figure 28: Images of a planar document. There is a very low difference
between two images

Figure 29: This figure shows a part of book image near the spine of the
book.Green points show the exact points of the feature points whereas the
blue points show the matches.

Figure 30: This figure shows blocks taken from the image near to the spine
of the book. We can observe the difference in size and orientation.

65

7.1.2 Experiments on Spine of a Book

This section covers the experiments made on curled book images. These

experiments are handled to improve the quality of the 3D model of our book

surface. We are interested especially in the spine of the book since it contains

the most curled data and also is very hard to model with naive similarity

measure methods.Problems special to this area are as explained in section 2:

1. There are not enough features to model this area very well.

2. The difference between two stereo images in this particular area of the

book image is very high in contrast,size and shape.

After making these observations we first increased the number of extracted

points on the image to have more feature points near the spine of the book.

This however did not improve our results as much as expected since new

points found by Harris extraction method also tend to be in the middle of

the book image rather than near the spine. We then focus our interest on

finding matches for the points we have near the spine. For this purpose

we first cut out small parts from the book image and try to reach to an

optimum value for block size and number of predictors for our matching

algorithm.After experimenting heavily on these values we have in the end

found out these experiments are futile as can be seen from Figure 29 the

matches tend to vanish as feature points approach to spine. The problem is

that with a fixed block size the contents on one of the pictures differs too

much that our algorithm can not handle it(see Figure 30). After that we

consider using a new algorithm based on making an affine transformation to

the source block so that it can find a match on the other picture 2. For this

purpose we again take small parts of the book images near the spine of the

book (look figure 31).In these pictures, the white crosses correspond to the

66

points to be matched and black points are the furthest prediction points that

new algorithm returns perfect matches. We have tested points with different

skew levels. Actually the skew level can be seen as their distance to the

spine of the book. The nearer the point to the spine the higher the skew

level is for that point. Table 1 shows the displacement vectors between the

starting points and the perfect match. The results on Table 1 show us that

Table 1: Results of distance vectors for predictors
Image Name dx dy

Figure9-a 6 12
Figure9-b 5 10
Figure9-c 6 10
Figure9-d 5 10

this method is not robust and needs very good predictors to work properly.

Since our predictors tend to be more than ten pixels away from the original

point we do not add this algorithm. Instead we decided to solve the problem

in the smoothing module of our software.

7.2 Experiments on Smoothing

This section explains and discuss on experiments to test different smooth-

ing methods introduced in Section 3. The first subsection challenges the ex-

periments on planar document images whereas the second subsection covers

the experiment on book images.

7.2.1 Experiments on Planar Documents

We begin our experiments again on planar documents because it is easier

to observe the results in this case. We expect our algorithm to move all points

in ΩP (for description see Section 3.This one models the surface of a planar

document) to a plane . For this purpose, we took an image of a simple

67

Figure 31: This picture shows the results of our second matching algorithm.
As can be seen easily from the pictures, the point to be matched and the
initial guess points should be near to each other

68

Figure 32: This picture shows an unsmooth model of a planar document

Figure 33: This picture shows results of smoothing(fitting to a plane) for
different variable values. In all pictures above we fix l = 200 and τ = 1mm.
For the left top image sigmax = 10 and sigmay = 20,for the right top
sigmax = 20 and sigmay = 40, for left bottom sigmax = 40 and sigmay =
80and last right bottom sigmax = 100 and sigmay = 150

69

Figure 34: This picture shows results of smoothing (fitting to a parabola) for
different variable values. In all pictures above we fix l = 200 and τ = 1mm.
For the left top image sigmax = 10 and sigmay = 20,for the right top
sigmax = 20 and sigmay = 40, for left bottom sigmax = 40 and sigmay =
80and last right bottom sigmax = 100 and sigmay = 150

A4 document(look at Figure 28 to see stereo image pair of A4 document).

After running the matching algorithm in the image pair in Figure 28, we

have our input ΩP . As seen in Figure 32 we have a nearly perfect matching

with only a small number of mismatches. The problem now is to tailor out

the values of neighborhood sizes (σx and σy), threshold (τ) and number of

iterations (l)(all variables explained in Section 3). We first try to find the

values of variables for case of plane fitting. Figure 33 show us the effect of

each variable. As expected the most important variable tends to be the sizes

of neighborhood (σx and σy). This directly affect the size of local points set

(β) thus in the case of a planar image we see that we need larger sizes to have

a perfect smoothing. We can actually use the number of outliers that still

exist as a merit of measurement on how good the smoothing is. As we can

see from Figure 33 a larger neighborhood(σx = 100mm and σy = 150mm)

70

Figure 35: This picture shows results of smoothing(fitting to a plane) for
different variable values(for a book image). In all pictures above we fix l =
200 and τ = 1mm. For the left top image sigmax = 20 and sigmay = 50,for
the right top sigmax = 30 and sigmay = 30, for left bottom sigmax = 100
and sigmay = 150and last right bottom sigmax = 35 and sigmay = 50

size with the number of iterations fixed to 200 and threshold value set to

1mm fits the points perfectly. Increasing the neighborhood sizes (σx and σy)

further do not improve results whereas causes a longer computation time.

After finishing tests on plane fitting we do the same tests with paraboloid

fitting. As we can see from Figure 34 paraboloid fitting results in undesired

curls on the model. This even toying with variables can not be solved. So

after some experimentation we conclude that for planar images using a plane

fitting algorithm with a neighborhood size of σx = 100mm and σy = 200mm,

threshold value set to 1mm for 200 times iteration.

7.2.2 Experiments on Book Images

The next issue in smoothing is to smooth a 3D point set ΩB which

models the surface of a book. As explained already in Section 7.1, we will

71

Figure 36: This picture shows results of smoothing (fitting to a paraboloid)
for different variable values(for a book image). In all pictures above we fix l =
200 and τ = 1mm. For the left top image sigmax = 20 and sigmay = 40,for
the right top sigmax = 30 and sigmay = 65, for left bottom sigmax = 80
and sigmay = 100and last right bottom sigmax = 100 and sigmay = 150

try to solve the problem of outliers by using an appropriate smoothing model.

For this purpose we first begin our experiments with plane fitting. For the

first experiments we decide to use the same set of variables (σx = 100mm and

σy = 200mm, τ = 1mm and l = 200) for ΩB. As seen in Figure 35 the result

is a surface without any curl near the spine of the book. This, of course,

proves that we again have to play around with the variables to get a nearly

perfect model. We again observe that the actual problem can be reduced

to picking the right size of neighborhood. We begin testing different sizes of

neighborhoods however this time taking smaller values for σx since we observe

that by taking smaller neighborhoods on x− axis we preserve the curl near

the spine. After some intense experimentation with different values we found

out that there really is not an optimum value that gives results with no or

very few outliers. However as seen in Figure 35 the results tend to be better

72

Figure 37: This figure shows the results of both fitting algorithms together
in a neighborhood of 35mm− 50mm for book image

as 25 ≤ σx ≤ 35 and 55 ≤ σy ≤ 65. The values of l and τ stays the same as

in the planar case. After having these results as explained in Section 3 we

decide to fit the point set ΩB to an applicable surface [19]. By this method we

know that we keep the curl however we fear that the not so high curled parts

of the book surface will also have additional curl added to it. Keeping this in

mind we begin our experiments again by changing the values of the variables

(σx, σy, τ and l). As we illustrate our results for different values of variables

in Figure 36 we have observed that large sizes of neighborhood (around 125

for σx and around 200 for σy) gives out better results. These experiments

are also done keeping the values of τ = 1mm and l = 200. We conclude from

these tests that we need a larger neighborhood for a better fit in the case of

fitting to a paraboloid. As we compare the results of paraboloid fitting with

the plane fitting we see that paraboloid fitting keeps the curl better, however

since it needs a larger neighborhood to achieve that it is much slower that its

counterpart. Since we believe that having a better model is more important

that the total time spent on calculations. Even though we have tried different

smoothing methods our 3D model of the surface is not 100% perfect and has

some error on it.

73

Figure 38: This figure shows the results of both fitting algorithms together
in a neighborhood of 105mm− 250mm for book image

Figure 39: This figure shows the results of both fitting algorithms together
in a neighborhood of 105mm− 250mm for planar document

7.3 Experiments on De-warping

The last experiments are devised for the De-warping algorithm in use.

For this purpose we first begin testing with a 3D point set Ωcylinder which

models a cylinder cut in half from its base (see Figure 40). The cylinder has

dimensions r = 10mm and h = 20mm. These tests are done to prove that

the method creates a conformal mapping since a cylinder is a developable

surface, meaning it is a surface with zero Gaussian curvature, i.e., it is a

surface which can be flattened onto a plane without any distortion, giving

us a planar object in the end. After that we continue our test with planar

document images. The last experiments are done on the book images.

74

7.3.1 Experiments with Cylinder

The first tests as explained above are done on a developable surface, a

cylinder in this case. The first experiment is made to test if the algorithm

works at all. This test, as the output can be seen in Figure 42, turns out

that our algorithm works as expected in the case of a developable surface.

The orientation is caused because of the fixed variables. We can not control

which variables we set and in this case they cause an orientation like this.

Then we have altered the cylindrical model and change the values of some

points on the cylinder. This means we move some of the points to outside

the cylinder surface. This can be viewed to compensate for the error in our

3D model reconstruction. In mathematical terms:

Let p = (x, y, z) be a point in set Ωcylinder,then to change the place of p

and take it outside the cylinder surface by pnew = (xnew, ynew, znew) where

xnew = x, ynew = y and znew = z − 0.01

In Figure 43 only 5% of the points have been removed from the surface. We

can actually observe from Figure 43 that there is a difference between the

two results. However we can easily say that this is actually acceptable. The

Figure 44 shows that moving the same points only a little further (instead

of subtracting 0.01 we subtract 0.02) causes our method to suffer deeply and

return an unacceptable result. After observing this result we make one last

test with our cylinder data. This test consist of adding an outlier to the

surface. This is again done by moving one point away from cylinder surface.

The result of this test can be seen in Figure 45. As expected having even

one outlier can cause a drastic change in the result of the de-warp method.

After finishing these experiments we see that it is futile to have 3D models

of surfaces with very little or no error in them. This can be explained as the

75

Figure 40: Three dimensional cylinder model.

method is not very robust to models with error on it. To have an idea on

cylinder model with points moved from the surface please see Figure 41

7.3.2 Experiments on Flat Paper Images

After finishing our tests on cylinders, we wanted to see how this algo-

rithm works on real sets. For this purpose, we began our testing with basic

flat paper images. These images have no curl(actually there is a little curl

on the image however this is not visible to human eye)(see Figure 28). An-

other reason we want to further our tests with these documents is that we

are sure that after smoothing the 3D point set ΩP is a perfect model for the

planar document surface. The set of points corresponding to ΩP from the

original image can be defined as ΩPHarris
. As can be seen from figure (47),

the de-warping algorithm works actually quite well for this case. However we

can see that in some of the lines there are skewed characters. These skewed

76

Figure 41: Three dimensional cylinder model with noise added to it.

Figure 42: De-warped cylinder model. This is the perfect de-warp model
since no noise is added to it

77

Figure 43: De-warped cylinder model. This model is done with 5% of the
points on surface moved. They move in z-axis with a displacement of 0.01
mm

Figure 44: De-warped cylinder model. This model is done with 10% of the
points on surface moved. They move in z-axis with a displacement of 0.01
mm

78

Figure 45: De-warped cylinder model.

characters are caused due to the error when we move an outlier on ray of

light. This problem can be easily solved by finding the real corresponding

point u ∈ ΩPHarris
(defined as u =

[
xu yu 1

]T
) to the de-warped im-

age from the source image. We do this by multiplying the known 3D point

w ∈ ΩP (defined as w =

[
xw yw zw 1

]T
) with the camera projection

matrix PC(For the definition of camera matrices and please look at [4]). This

can be seen mathematically as :

u = PC ∗ x

By applying this equation on all points of ΩP , we find their corresponding

points set ΩPHarris
. This method solves these skews on the de-warped image.

The next experiment is done on an image with a high perspective effect.

This means the picture is taken so that we have implemented a higher skew

in the image than the usual case(see Figure 48). If we look closely on the

Figure 48 we see that already our 3D model points have a skew associated

79

Figure 46: De-warped points shown in a 2D plot. The lines on both sides
should actually be parallel but due to some skewing affect it is not.

with them. This skew is already preserved in the de-warp point set also.

The explanation for this can be that our camera matrices have some error

associated with them and in the case of higher error rates, this causes us to

have some kind of skew associated with it.

7.3.3 Experiments on Book Images

We do not really have a 100% reliable model for our book surfaces as

explained in Section 7.2 . In our experiments in on book images, we used three

different page styles to see how robust an algorithm we have. We wanted to

see if it works with different cases like pages with figures and images on them.

We also examine the case in which there is only text on both pages. After

observing not so promising results with planar document and cylinder data,

we continued our tests with book images and not surprisingly our results did

not seem to improve. As can be viewed in Figure 49 we have not established

a decent de-warping for any of the cases we tried. This leas us to search for

the reason between results we have and results in [3]. First we want to test if

the mapping we use for de-warping really preserves the angles(as it should).

80

Figure 47: De-warping method implemented on different images

Figure 48: De-warping method implemented on a high skewed document

81

Figure 49: This figure shows different dewarping results we obtain through
our experiments.

Figure 50: Result of de-warping by setting different points

82

For that reason, we first used a planar document image first since we can

actually find the plane that our document lies and move all points to that

plane and have a perfect 3D model of the surface. We call the 3D point set

that models for the planar document case as ΩPlanar. The results we obtain

can be seen on Figure 46 and proves that the method creates some skew even

under this case. When we check the values between the 3D triangles and

their 2D counterparts we see that the maximum difference is in the orders

of 1 ∗ e−7 radians. This also shows that in this case our mapping preserves

the angles of triangles since error in this order can be caused by numerical

computations. However, when we try the same experiment on a book image,

the difference between angles is in the orders of 0.01. This meant there could

be up to five degrees of angle change which actually was the reason for all

this curled de-warped book images(see Figure 49). Other reasons why our

conformal mapping did not work as expected are actually explained in [20].

The reason is:

Let Pd = (u, v) be a de-warped point and P3D = (x, y, z) is the corresponding

three dimensional point. Let S4 denote the set of all triangles that has Pd

as a corner and S3D
4 denote the same for P3D. It is always that the sum of

the angles in S4 sum up to 2Π, however this is not true for S3D
4 .

This means our mapping can never be a hundred percent conformal mapping

except for the planar image case. This problem however can be minimized

by uniformly distributing the deformation [20]. This also has the implication

that the 3D model of the surface should be perfect or nearly perfect. Since

we can not build a perfect 3D model there is no use in trying to have a

uniform distribution of points thus triangles. This actually was not a problem

on the [3] since their 3D model hs a very low error they can actually use

this property of uniform distribution and minimize the error caused by this

83

problem. This is not the only problem with the de-warping approach however.

As explained in section 5.3, the linear system we had is an oversized system

so have infinitely many solutions. We solved that problem by setting some of

the parameters however this setting can also give different shaped solutions

due to the deformation we had. As can be seen from figure (50), fixing

different points(see Section 5.3) to find a unique solution results in totally

different shapes. This can be solved trying to fix different points however

practically this is not applicable [20]. These experiment prove that to find a

conformal mapping that solves the curls in a book image needs a very precise

3D model of the surface which can not be implemented using stereo vision

methods based on cameras.

84

8 Conclusions

We have implemented a system that uses a stereo setup to create a 3D

model of a given document and then by applying a conformal mapping on

this model, to get an uncurled version of the document. In our work, we have

implemented several different approaches to build a more precise 3D model.

In matching we have implemented two different matching algorithms. The

first method based on block matching with sum of square differences as a

similarity measure proved to be very successful in the images with a small

difference. However on our tests in the spine of book images, where the

contents of the blocks differ more, this method proved to give less accurate

results. Therefore we tried a different method in which we could implement

some changes on the source block so that we could find better matches. This

method gave better results, given that our starting point was very near to

the aimed point, which was very hard for us to achieve. We then managed

to correct our results by applying a smoothing to our 3D model. We also

attempted different fitting algorithms. These include fitting to a plane and

paraboloid. Fitting to a plane worked better for plane images, whereas fitting

to a paraboloid resulted in better book images. These were all done to have

a reliable 3D model for the de-warping method.

On the second part we work on de-warping method. This method, as we

proved on our tests, seemed to work well under the given condition that we

had a nearly perfect 3D model. However, as explained in section 7, we can

not provide a noiseless 3D model using a stereo system. Other explanations

included in [20] also proved that we needed a better parametrization for our

mapping.

This thesis proves that a conformal mapping is not enough to have a very

good method for de-skewing documents since we need to take the size parame-

ters also into account. I want to emphasize that with a different parametriza-

tion that also keeps sizes of triangles as intact as possible, maybe better

results are possible. However we have to implicate that these are just hy-

pothesis and in the end turn out to be wrong as well.

86

A APPENDIX

A.1 Bilinear Interpolation

This is a method to interpolate functions with two variables. We use

this method to find the corresponding pixel values in images we created from

our source images. The method can be summarized as finding the value of

a discrete function in a point in which we know the values of four points

around it and we want to give weights to the points in reverse proportion

to their distance from our point of interest. Say we have a point P = (u, v)

and we want to know the value of an unknown function f(x, y) at P . We

also know values of f(x, y) at four different points which are f(x1, y1) = Ω1,

f(x2, y1) = Ω2, f(x1, y2) = Ω3, f(x2, y2) = Ω4. Then we can find the value of

f at P by computing:

f(u, v) ≈ Ω1

(x2 − x1)(y2 − y1)
(x2 − u)(y2 − v)

+
Ω2

(x2 − x1)(y2 − y1)
(u− x1)(y2 − v)

+
Ω3

(x2 − x1)(y2 − y1)
(x2 − u)(v − y1)

+
Ω3

(x2 − x1)(y2 − y1)
(u− x1)(v − y1)

The value we compute from this method is just an approximation to the

actual value.For more information on interpolation methods please refer to 7

A.2 Barycentric Technic for Determining Triangle Points

This technique is used to determine whether a point lies in a triangle or

not. We know the location of three corners of our triangle(points A,B,C).

7http://en.wikipedia.org/wiki/Bilinear interpolation

From these three points, we can actually build our plane equation. To build

this equation, we first choose one of the corners as our origin(say A).We

take two vectors that passes through A.The best candidates are (B−A) and

(C − A). Now we can describe our plane equation.

P = A+ u ∗ (C − A) + v ∗ (B − A)

We have three rules that a point must hold if it is inside the triangle.These

rules are:

1. If u or v < 1, the point is outside our triangle.

2. If u or v > 1, point is also out of our triangle.

3. If u+ v > 1, point is out of our triangle .

Keeping these in mind the process of finding u and v from three points is an

easy task.

First subtract a from both sides:

(P − A) = u ∗ (C − A) + v ∗ (B − A)

Assume v0 = (C − A), v1 = (B − A) and v2 = (P − A). So our equation

becomes:

v2 = u ∗ v0 + v ∗ v1

We need two equations to solve our system since we have two unknowns. To

get two different equations, we impose a scalar product of our equation with

both v0 and v1. We get:

v2.v0 = u ∗ (v0.v0) + v ∗ (v1.v0) (4)

v2.v1 = u ∗ (v0.v1) + v ∗ (v1.v1) (5)

88

All we are left to do now is to solve this equation and we can do it by writing

it in matrix format and solve this equation system:

 (v0.v0) (v1.v0)

(v0.v1) (v1.v1)


 u

v

 =

 (v2.v0)

(v2.v1)


This system can be solved using numerical methods. When we have the u

and v values we only check if they meet the three conditions for a point to

be inside our triangle. For more information on this technique please refer

to 8

A.3 Gradient Descent

This is an optimization algorithm to find a local minimum for a given

function in a neighborhood. This algorithm takes steps proportional to the

negative of the gradient of function to find the local minimum.

For a real-valued function F (x) gradient descent base its fundemantals on the

observation that F (x) in a neighborhood of x is continous (thus differentiable)

decreases fastest in the direction of negative gradient of F (x) (−∇F (x)).

From this observation it follows that:

y = x− γ∇F (x)

for γ > 0 and being a small number enough, we have F (x) ≥ F (y). Now

if we say we begin from a point x0 and go through the series of points from

xii = 1,, n with equation xn+1 = xn − γn∇F (xn) with n ≥ 0 holding you

have:

F (x0) ≥ F (x1) ≥ F (x2)......... ≥ F (xn)

8http://www.blackpawn.com/texts/pointinpoly/default.html

89

so this series will converge to a local minimum. For more information on

gradient descent algorithms please refer to [21]

90

References

[1] P. Kakumanu, N. Bourbakis, J. Black, and S. Panchanathan,“Document
Image Dewarping Based on Line Estimation for Visually Impaired ,”
18th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’06), pp. 625–631, 2006.

[2] A. Ulges, C. H. Lampert, and T. M. Breuel, “Document image dewarping
using robust estimation of curled text lines,” in International Conference
on Document Analysis and Recognition (ICDAR), (Seoul, South Korea),
pp. 1001–1005, aug 2005.

[3] M. S. Brown and C. J. Pisula, “Conformal Deskewing of Non-Planar
Documents,” Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1, pp. 998–1004, 2005.

[4] K. Parvez, “Stereo Reconstruction of Images,” 2007.

[5] C. G. Harris and M. Stephens, “A combined corner and edge detector,”
4th Alvey Vision Conf., pp. 147–151, 1988.

[6] T. Breuel, “Geometric Aspects of Visual Object Recognition,” 1992.

[7] H. N. Timo Zinfler, Christoph Graefll, “High-Speed Feature Point Track-
ing,” Vision, Modeling and Visualization, pp. 49–56, 2005.

[8] T. K. Carlo Tomasi, “Detection and Tracking of Point Features,” Tech-
nical Report CMU-CS-91-132, 1991.

[9] D. Eberly, “Least Squares Fitting of Data,” Geometric Tools Documen-
tation, 2001.

[10] Z. Zhang, “Parameter Estimation Techniques: A Tutorial with Appli-
cation to Conic Fitting,” Image and Vision Computing Journal, vol. 3,
1996.

[11] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun.,” ACM, pp. 381–395.

[12] B. Delaunay, “Sur la sphère vide,” Izvestia Akademii Nauk SSSR, Otde-
lenie Matematicheskikh i Estestvennykh Nauk, vol. 7, pp. 793–800, 1934.

[13] D. P. D. C. B. Barber and H. Huhdanpaa, “The quickhull algorithm for
convex hulls,” ACM Trans. Math. Software, vol. 22, pp. 469–483, 1996.

[14] T. A. DAVIS and W. W. HAGER, “Dynamic supernodes in sparse
Cholesky update/downdate and triangular solves,” Technical report TR-
2006-004, CISE Dept, Univ. of Florida, Gainesville, FL, 2006.

91

[15] W. W. H. Y. Chen, T. A. Davis and S. Rajamanickam, “Algorithm
8xx: CHOLMOD, supernodal sparse Cholesky factorization and up-
date/downdate,” 2006.

[16] T. A. Davis and W. W. Hager, “Row modifications of a sparse Cholesky
factorization,” SIAM Journal on Matrix Analysis and Applications,
vol. 26, pp. 621–639, 2005.

[17] T. A. Davis and W. W. Hager, “Multiple-rank modifications of a sparse
Cholesky factorization,” SIAM Journal on Matrix Analysis and Appli-
cations, vol. 22, pp. 997–1013, 2001.

[18] T. A. Davis and W. W. Hager, “Modifying a sparse Cholesky factor-
ization,” SIAM Journal on Matrix Analysis and Applications, vol. 20,
pp. 606–627, 1999.

[19] M. Pilu, “UNDOING PAGE CURL DISTORTION USING APPLICA-
BLE SURFACES,”IEEE International Conference on Image Processing,
Thessalonica, Greece, September 2001., 2001.

[20] K. H. Michael S. Floater, “Surface Parametrization:a Tutorial and Sur-
vey,” 2003.

[21] M. Avriel, Nonlinear Programming: Analysis and Methods. Dover Pub-
lishing, 2003.

92

	Introduction
	Stereo Matching
	Stereo System and Rectification of Images
	Matching Problem
	Our Approach
	Determining the Displacement Vector
	Finding the Matches

	Smoothing
	Linear Least Squares Method
	Fitting to a plane
	Fitting to a paraboloid

	RANSAC
	General Algorithm
	Our implementation

	Separating a Book Image
	Problem
	Method

	De-warp
	Conformal Mapping
	Delaunay Triangulation
	De-warping Method
	Method

	De-skew
	Experimental Results
	Experiments on Stereo Matching
	Experiments on Planar Documents
	Experiments on Spine of a Book

	Experiments on Smoothing
	Experiments on Planar Documents
	Experiments on Book Images

	Experiments on De-warping
	Experiments with Cylinder
	Experiments on Flat Paper Images
	Experiments on Book Images

	Conclusions
	APPENDIX
	Bilinear Interpolation
	Barycentric Technic for Determining Triangle Points
	Gradient Descent

