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A B S T R A C T

In recent years the explosive growth of digitally stored image and video data has
increased the need for tools to search and organize visual data automatically by their
content. Browsing environments, which help users to find the images or videos they
need by structuring image and video collections, are one solution to this problem.
Therefore, image clustering techniques are needed that group semantically related
images, are highly scalable, and produce balanced structures to be useful for content-
based browsing.

In this thesis both flat and hierarchical k-means clustering techniques are com-
pared to hierarchical agglomerative ones particularly with respect to scalability and
balancing requirements, using multiple standard features and real-world datasets.
Another main contribution is a simple and efficient strategy to enforce a more bal-
anced clustering based on a hierarchical frequency sensitive variant of the online
k-means algorithm, which we call hbo-k-means. This method will be integrated in a
practically employed system within the FIVES Project.

Z U S A M M E N FA S S U N G

Das exponentielle Wachstum digital gespeicherter Bild- und Videodaten in den
letzten Jahren hat einen Bedarf an Werkzeugen geschaffen, Daten inhaltsbasiert
zu durchsuchen und organisieren. Browsing-Umgebungen, die Nutzern bei der
Suche nach Bildern und Videos durch die Strukturierung der Daten unterstützen,
stellen eine Lösung dieses Problems dar. Aus diesem Grund werden Bild-Clustering-
Techniken benötigt, die in der Lage sind semantisch verwandte Bilder zu gruppieren,
hoch skalierbar sind und balancierte Strukturen erzeugen, um für inhaltsbasiertes
Durchsuchen von Nutzen zu sein.

Als einen ersten Schritt in diese Richtung werden in dieser Arbeit flache und hier-
archische k-means-Methoden mit hierarchisch agglomerativen Clustering-Verfahren
mit Schwerpunkten auf Skalierbarkeit und Balanciertheit verglichen. Dabei wer-
den mehrere Standard-Features und anwendungsnahe Datensätze verwendet. Ein
weiterer Beitrag dieser Arbeit ist eine einfache und effiziente Strategie, genannt
hbo-k-means, um balancierte Clusterings zu erzwingen. Die Methode basiert auf
einer häufigkeitssensitiven Variante des online k-means Algorithmus und wird in ein
praktisch eingesetztes System im Rahmen des FIVES-Projektes integriert.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [38]
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1
I N T R O D U C T I O N

Over the last few years digital data has been growing exponentially. The main reason
is the vast increase of sharing image and video data over the Internet. Here are a few
key statistics to illustrate this development.

YouTube is a video-sharing website on which users can upload, share, and view
videos. Alexa ranks YouTube as the third most visited website on the Internet, behind
Google and Facebook (see [33]). Youtube exceeds 2 billion views a day, which is nearly
double the prime-time audience of all three major U.S. broadcast networks combined.
Additionally, 24 hours of video are uploaded every minute. In other words, more
video is uploaded to YouTube in 60 days than all three major US networks created in
60 years. Also interesting is that the combination of better search and discovery (in
addition to more content) has driven the daily time each user spends on YouTube on
average up 55% in 2009 (see [44]; Effective May 2010).

One of the most popular image hosting websites is Flickr. Flickr hosts more than
4 billion images. The social networking website Facebook even registers around 2.5
billion uploads to the site each month (see [22]; Effective January 2010). Therefore, it
is a little less surprising that the number of digital cameras and camera phones in the
world surpassed 1 billion in 2007 (see [26]; Effective March 2008).

Where does all this data come from? As already indicated online portals like
YouTube, Flickr or Facebook offer data in large amounts. This content is mainly
generated by users sharing their photos and videos. It has become easy to acquire
huge volumes of digital data because digital acquisition devices (still image and video
cameras) are already wide-spread. But huge image collections are also becoming
common due to commercial efforts like google street view (see [55]) or broadcasting
networks, the archives of which contain increasingly more digital content (see [8, 14]).
This creates the need for efficient ways of searching through the content, and imposes
the challenge to organize and structure it, so that users can browse and find the
images and videos they are looking for.

Different Approaches On Browsing Multimedia Databases

Currently, search for specific content is mostly done through a query-by-text approach,
for which images and videos has to be manually annotated. Borth et al. state a few
drawbacks. Manual annotation is a very time-consuming process which might lead
to subjective results depending on the person doing the annotation. Furthermore,
only content that has been annotated can be retrieved afterwards and the quality of

1



2 introduction

search results highly depends on the quality of the annotation. In online-portals like
youtube.com and flickr.com the owners of the uploaded data provide the meta-data
(“tags”) themselves, which enables them to manipulate the availability of their content
for a wide range of possible queries. Consequently more suited content might be
suppressed which reduces the quality of the entire search result (see [8]).

Another approach more suited for large multimedia databases is to describe objects
by their content or semantic information. The semantic information of an image is
what can be inferred after seeing the image, for example the presence or absence of
specific objects, their attributes or relative positions. Understanding the semantics of
an image has uncountable applications ranging from object recognition, face detection
to image retrieval (see [1]). The problem of formulating proper queries led to the
definition of the semantic gap, “a lack of coincidence between the information that
one can extract from the data and the interpretation of the same data for a user in a
given situation.” (see [51]). Multiple approaches try to bridge this semantic gap, often
leading to user interface design (see [8]).

A different content-based strategy is the query-by-example approach, where an image
or video is given to the system to represent the query, bypasses the inherent problem
of query formulation in this space (see [8]). However, while so far most approaches
of image database management have focused on the query-by-example approach, the
effectiveness remains questionable. Obviously, it is often difficult to find a suitable
query image. In addition, repetitive queries tend to become trapped among a small
group of undesired images, providing only a localized view on the database (see
[11]).

Content-Based Browsing Environments

A third approach is content-based browsing environments, which offer an alternative
to conventional search-by-query approaches. They try to organize and structure the
given collection so that users can find the entity they need. Instead of presenting a
localized view of the database, browsing environments also offer an overview of the
entire database. Also, they allow the user to dynamically redefine their search, which
is convenient if the user does not know yet what exactly they he or she is looking for.

Examples for content-based browsing systems are RotorBrowser [18] or VideoSOM
[6]. The concept of similarity pyramids for browsing was introduced in [11]. This
concept was also applied to video databases in a system called ViBE [12]. Another
system for similarity-based browsing of multimedia databases, Navidgator1, was
introduced by Borth et al.2 in [8]. Navidgator serves as a basis for this thesis.

1 http://madm.dfki.de/navidgator-howto/navidgator-howto.html
2 Multimedia Analysis and Data Mining research group of the German Research Center of Artificial

Intelligence

http://madm.dfki.de/navidgator-howto/navidgator-howto.html


introduction 3

How do the browsing environments organize a given collection? What underlies
systems like Navidgator is a (hierarchical) clustering. This process refers to the unsu-
pervised classification of patterns (observations, data items, or feature vectors) into
groups, so called clusters, which is called clustering (see [34]). Clustering algorithms
are used to build the similarity based structure upon the image database, on which
browsing environments rely. Based on the hypothesis that semantically similar images
tend to be clustered into the same groups, clustering can both improve the result qual-
ity and speed up the retrieval itself, if the search space is restricted to specific clusters
of semantically related images (see [13, 36]). Figure 1 illustrates how the hierarchical
clustering is used to produce a tree representation used in browsing environments.
Part (a) shows images represented by their feature vectors in some feature space.
These are then clustered hierarchically in (b) leading to the tree representation in (c).
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4,6 3 1,7,9 0,2,5,8

0,8 2,5

(c)

Figure 1: An illustration of the general approach of hierarchical clustering. Feature vectors in
some feature space (a) are clustered hierarchically (b), which is then transformed
into a tree representation (c).

Systems like Navidgator enable the user to easily and efficiently browse a database
via a graphical user interface. The Navidgator interface is shown in Figure 2. The
Figure also illustrates the relationship between the interface and the underlying
clustering tree, which is the result of a hierarchical clustering algorithm. First, the



4 introduction

user has to define a focus image which basically determines the direction in which
the clustering tree will be explored (a). The user is able to redefine the focus image
at any point during browsing. The exploration of the database is performed by the
given zooming tools (b). The user can either zoom-out or zoom-in in the database. A
zoom-in action will narrow down the available images according to his query image
(e,f), and a zoom-out action will display a coarser level of the database to the user
(g,h). The depth of the database and the users current position are visualized by a
vertical bar next to the zooming tools enabling an intuitive orientation.

Challenge: Scalability

A key problem with Navidgator is that it uses a hierarchical agglomerative bottom-up
clustering. This method works by successively merging clusters together depending
on their pairwise distances. Unfortunately, it does not scale very well due to the
required distance matrix of size O(N2), where N is the number of images. In practice,
only collections of up to 10.000 images could be clustered and browsed. In many
practical applications, however, there is a need for highly scalable image clustering
algorithms, which are able to process up to 1 million images using a reasonable
amount of resources.

Challenge: Balancing

For image browsing environments clustering techniques are needed, which are not
only able to group semantically related images, but will produce balanced structures
to be useful for the described task. These balanced structures are more likely to
represent the semantic complexity of the dataset in a comprehensible way, because
they try to equally distribute the semantic complexity on each single level. In contrast,
unbalanced structures lack regularity on which the user orientation implicitly relies.
The balancing requirement will be illustrated in more detail in section 2.3.

In this thesis the clustering back-end of Navidgator is evolved with respect to
both scalability and balancing. Since this is a problem of the underlying hierarchical
agglomerative approach, other methods need to be examined. Therefore, multiple
variants of the popular k-means algorithm are compared to hierarchical agglomerative
clustering techniques. k-means is linear in the number of images and therefore scales
very well. A second main contribution is a simple and efficient strategy to enforce a
more balanced clustering based on a frequency sensitive variant of the online k-means

algorithm, which we call hbo-k-means. This clustering technique will be integrated
in Navidgator. Particularly, the resulting extended system will be contributed to
the FIVES project (Forensic Image and Video Examination Support3). FIVES brings
together partners from law enforcement, academia and industry to work together to

3 www.fives.kau.se

www.fives.kau.se


introduction 5

(a) The big image displayed at the
top is called the “focus image”.
It defines what kind of pictures
you are currently interested in.

(b) You can change your zoom fac-
tor with the controls beneath the
focus image.

(c) The images in a database view... (d) ...can be found in a certain sub-
tree of our browsing structure.

(e) Let us first zoom out such that ... (f) ...the database view shows sam-
ples from the whole collection.

(g) We now zoom into the collection,
and the images in the database
view get fewer and fewer...

(h) ...and are more and more similar
to the focus image.

Figure 2: The Navidgator browsing interface and its relationship to the underlying clustering
tree. Also, zoom-in and zoom-out operations are illustrated (images from http:

//madm.dfki.de/navidgator-howto/navidgator-howto.html)

http://madm.dfki.de/navidgator-howto/navidgator-howto.html
http://madm.dfki.de/navidgator-howto/navidgator-howto.html


6 introduction

enhance the state-of-the-art for tools available to law enforcement in the investigation
of child sexual abuse. The contributed system will be used by law enforcement officers
to structure and browse confiscated materials.

Outline

The thesis is organized as follows. Chapter 2 describes the problem of image clustering
and gives a brief overview of state-of-the-art solutions. The focus is on clustering algo-
rithms, validity indices to measure the quality of clusterings and different approaches
to enforce balanced clustering results. In Chapter 3 deals with the application of
clustering techniques for image browsing, describing the particular requirements
and our proposed variant of the k-means algorithm hbo-k-means. Chapter 4 provides
the experimental results. Multiple clustering techniques are examined using various
standard features on a number of real-world datasets. Special attention is paid to
the impact of hierarchical clustering and the enforcement of balancing. Finally, our
proposed method is demonstrated to be scalable on a large-scale dataset of youtube
keyframes. The thesis is concluded in Chapter 5 with a summary of the results and
contributions and a discussion of unsolved problems and future work.



2
S TAT E - O F - T H E - A RT

This chapter gives a brief introduction to clustering and a summary of current
approaches. First, clustering is defined and the basic approaches are introduced. We
then take a look at how to measure clustering quality. Finally, different approaches to
enforce a balanced clustering are described.

2.1 clustering

Clustering refers to the unsupervised classification of patterns (observations, data
items, feature vectors, or in our case images/videos) into groups, so-called clusters,
such that patterns within the same cluster are similar, and those assigned to different
clusters are not (see [34]). Clustering is a subject of research in many areas such as
statistics, pattern recognition, machine learning and data mining. A wide variety of
clustering algorithms has been proposed for several applications, including image
segmentation, object and character recognition, document retrieval, and data mining
(see [34, 39]).

Clustering techniques broadly fall into one of the following groups (see [34, 39]):

• Partitional Clustering: These algorithms directly decompose the data into a set of
disjoint clusters. They attempt to determine partitions that optimize a specific
criterion function (optimization is often done iteratively).

• Hierarchical Clustering: By refining clusters recursively, these algorithms produce
a nested tree of partitions. These algorithms successively merge smaller clusters
or split larger ones (see agglomerative vs. divisive below).

• Density-based Clustering: The key point of these algorithms is to create clus-
ters based on density function. The main advantage of this class is to create
arbitrarily shaped clusters.

• Grid-based Clustering: These algorithms quantize the search space into a finite
number of cells and have been mainly proposed for spatial data mining.

This thesis focuses on hierarchical clustering. Here, another common distinction is
made between agglomerative and divisive methods, an aspect of algorithmic structure
and operation. Agglomerative approaches start with singleton clusters, which contain
only one sample, and successively merge clusters together until a stopping criterion
is satisfied. These methods are also referred to as bottom-up. In contrast, a divisive

7



8 state-of-the-art

method starts with all patterns in one single cluster and performs splitting opera-
tions until again a stopping criterion is satisfied. Obviously, these divisive methods
work top-down. Example techniques for these classes are hierarchical agglomerative
methods and hierarchical k-means (see [34]). A key contribution of this thesis is an
empirical comparison of both kinds of methods.

Lastly, we can differentiate between online and batch approaches. Batch approaches
use all available items at once to optimize the cluster assignment. On the contrary,
online approaches use only small subsets of the available data to update parameters
iteratively. This is necessary in cases when main memory is too small to store all
the data, or in streaming data applications, where samples arrive one at a time and
every sample is seen only once (see [4]). Another benefit of the online setting is the
interleaved adaptation of different internal system parameters.

2.1.1 Notation

Assume a dataset D = {x1, . . . , xN} comprising N data items, here feature vectors of
dimension d, and a partitions of these into a set of Clusters, K = {ki ⊆ D | i = 1, . . . ,m}.
Let ni be the number of samples of the i-th cluster, vi = 1

ni
·
∑ni
j=1 x

i
j the centroid of

the i-th cluster, where xij is the j-th data point belonging to the i-th cluster. Lastly, let
d(x,y) be the distance between two data points. Unless stated otherwise we assume
euclidean distance (similar to [46]).

Hierarchical clustering is usually represented by a tree, representing the nested
series of partitions. The used notation is derived from [13]. Let S denote the set of
all tree nodes. Each node of the tree s ∈ S is associated with a set of data points
ks ⊆ D. The number of elements in the cluster ks is represented by ns = |ks|. The
nodes’ children are denoted by c(s) ⊂ S and partition all the data points of the parent
node such that ks = ∪r∈c(s)kr. The leaf nodes of the tree correspond to the data points
of the dataset split into N singleton clusters.

2.1.2 k-means Algorithm

k-means is the simplest and most commonly used clustering algorithm. It minimizes
a squared error criterion

m∑
j=1

nj∑
i=1

d(xji, vj)
2 . (2.1)

It starts with a random initial partitioning and keeps reassigning the data points
to clusters, based on the similarity between the data point and the cluster centroid
(see Algorithm 1). Based on this the cluster centroids are updated. This is repeated
until a convergence criterion is met (e.g. no reassignment of any data point to a
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different cluster, or the squared error ceases to decrease significantly over multiple
iterations; see [34]). The use of the euclidean distance in the cluster assignment step
(2.a) arises from the implicit assumption that the overall distribution of the data
can be decomposed into a mixture of isotropic Gaussians (see Subsection 3.3.2 for a
derivation).

Algorithm 1 k-means

1. Initialize cluster centers vi, i = 1, ...m with randomly-chosen datapoints x ∈ D.

2. For a prespecified number of iterations or until convergence:

a) For j = 1 to m:

kj = {x ∈ D : d(x, vj) 6 d(x, vr) for all r 6= j}

b) For j = 1 to m:

vj = centroid(kj) =
1

nj
·
nj∑
i=1

x
j
i

The k-means algorithm is popular, because it is very easy to implement and fast
(time complexity in O(Nmd), which is linear in N). A major problem is its sensitivity
to the selection of the initial partition. While the algorithm has been proven to
converge to a local minimum of the squared error criterion function, this local
minimum might be of low quality in a global sense (see [48]). In practice, the k-means

algorithm is usually run multiple times and the solution with the lowest squared
error is chosen (see Equation (2.1)). Also, k-means is not as versatile as hierarchical
agglomerative algorithms, because the resulting clusters are always hyperspherical in
shape (see [34]).

2.1.3 Hierarchical Agglomerative Clustering

Conventional hierarchical agglomerative clustering algorithms work by first comput-
ing a complete matrix of distances between all data points in D and then, starting
from singleton clusters containing only one data point each, using this matrix to
sequentially merge elements together (bottom-up). Let ki = {xi}, i = 1, ...,N be the
disjoint singleton clusters. The distance matrix [Dij], i, j = 1, . . . ,m, defines the pair-
wise distances between clusters ki and kj, which initially is the distance between
the data points xi and xj. In each iteration the two clusters ki and kj with minimum
distance form a new cluster kl, and the distance from kl to each of the remaining
clusters is updated. This distance update is done with a specific linkage method,
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which are described below the algorithm. Since the distance measure is assumed to
be symmetric, only the upper triangular component of the proximity matrix needs
to be stored (see [11]). To simplify notation dij refers to the unique entry given by
dmin(i,j),max(i,j).

Algorithm 2 Hierarchical Agglomerative Clustering

1. S := {k1,k2, . . . ,kN}

2. For each (ki,kj) ∈ S2 compute dij := d(xi, xj)

3. For l = N+ 1 to 2N− 1:

a) (i∗, j∗) = argmin
(i,j)∈S2

dij

b) Set kl := ki∗ ∪ kj∗ and nl := ni∗ +nj∗

c) S := S \ {ki∗ ,kj∗}∪ kl
d) For each kh ∈ S \ kl:

compute dhl := f(dhi∗ ,dhj∗ ,nh,nl,kh,kl)

The general algorithm has now the form described in Algorithm 2 (see [11]). The
specific type of hierarchical agglomerative clustering is defined by the choice of a
linkage method and a corresponding function f.

• Single linkage uses the minimum distance of data samples between two clusters
as the distance between those clusters.
f(dhi∗ ,dhj∗ ,nh,nl,kh,kl) := minx∈kh,y∈kl d(x,y) = min(dhi∗ ,dhj∗)

• Complete linkage uses the maximum distance of data samples between two
clusters as the distance between those clusters.
f(dhi∗ ,dhj∗ ,nh,nl,kh,kl) := maxx∈kh,y∈kl d(x,y) = max(dhi∗ ,dhj∗)

• Average linkage uses the average distance of data samples between two clusters
as the distance between those clusters.
f(dhi∗ ,dhj∗ ,nh,nl,kh,kl) := 1

nh·nl ·
∑
x∈kh

∑
y∈kl d(x,y)

A key problem with agglomerative clustering is scalability. Unfortunately, all
conventional hierarchical agglomerative clustering algorithms have a complexity in
O(N2d), which for instance makes them inapplicable for applications like content-
based image clustering of more then 10.000 images (see [42]).
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2.2 cluster evaluation

Usually there is a semantic grouping that would be the right one. Since clustering is
mostly an unsupervised process, correspondence to this semantic grouping cannot
be ensured. Therefore, the evaluation of the clustering results is even more important
(see [36, 39]).

Cluster validity evaluation is very hard, because clustering is subjective in nature.
The same data set may need to be partitioned differently for different purposes. Jain
et al. give the example of an elephant, a tuna fish, and a whale. Whales and elephants
form a cluster of mammals. However, the user may be interested in the concept living
in water. Then whale and tuna fish should be clustered together. This subjectivity
is typically incorporated by domain knowledge, say by choosing certain features,
similarity measures or clustering algorithms.

Maulik and Bandyopadhyay state two fundamental questions that need to be
addressed in clustering systems. First, how many clusters are actually present in the
data, and second, how good is the clustering itself. For our purpose the question
regarding the number of clusters is not important, because we will use a fixed
number in our proposed hierarchical algorithm. However, the question of cluster
quality remains and gives rise to cluster validity analysis. Jain et al. state three types
of validation studies:

• Internal examination of validity tries to determine if the outcome of clustering
is intrinsically appropriate for the data.

• External assessment of validity compares the clustering result to an a priori
structure (ground-truth).

• A relative test compares two clustering results and measures their relative
quality.

In this thesis we will rely on external criteria only, since they are easier to interpret
and more likely to differentiate bad from good results by comparing the generated
clustering against a target partitioning. Internal criteria are feature space dependent
and measure how compact and how widely separated the clusters are. But for the
task of image clustering compact and well separated clusters are only of value if they
correspond to semantic classes (which is measured by external measures). Some of
the most popular internal validity indices are Dunn’s Index [21], Davies Bouldin Index
[16] and the Calinki-Harabasz-Index [10] (see [36, 39, 42]).

External Validity Measures

In the following, some external validity measures are introduced, which will be used
in the experiments in chapter 4 (see [13, 46]). The most commonly used external
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measures are Purity, Weighted Purity and Entropy, which are defined below. Assume
a partition of all data items into a set of semantic groups or classes, C = {ci ⊆ D | i =

1, . . . ,n}. Also let A be the contingency matrix produced by the clustering algorithm,
representing its solution, such that A = [aij], i = 1, . . . ,n and j = 1, . . . ,m, where
aij is the number of data points that are members of both class ci and of cluster kj.
Finally, let nj =

∑n
i=1 aij be the size of cluster kj. Then,

Purity =
1

m

m∑
j=1

maxi=1,...,n aij
nj

,

Weighted Purity =

m∑
j=1

nj

N

maxi=1,...,n aij
nj

,

Entropy =

m∑
j=1

nj

N
(−

1

logn

n∑
i=1

aij

nj
log

aij

nj
) . (2.2)

Purity represents the ratio of the dominant semantic class in each cluster averaged
over all clusters. For Weighted Purity we do not use the average purity over all
clusters, but an average weighted by the cluster sizes. For (Weighted) Purity a larger
value means that the cluster is a “purer” subset of the dominant semantic class. Since
Entropy also considers the distribution of semantic classes in a cluster, it can be seen
as a more comprehensive measure than Purity. Note that contrary to (Weighted)
Purity, an entropy value near 0 means the cluster is comprised mainly of one single
class, while a value near 1 implies that the cluster contains a uniform mixture of all
classes (see [13]).

Another external measure is the V-Measure (proposed in [46]), which is based on
conditional entropy. In Information Theory, the conditional entropy H(Y|X) quantifies
the remaining entropy (i.e uncertainty) of a random variable Y given that the value of
another random variable X is known (see [15]). The V-Measure explicitly measures
how successful the two complementary criteria of homogeneity and completeness have
been satisfied. A clustering result satisfies homogeneity if all of its clusters contain
only data points which are members of a single class. It satisfies completeness if all
the data points that are members of a given class are elements of the same cluster.
Note that these criteria are complementary by considering two degenerate clustering
solution. First, assigning all data points to one single large cluster gives perfect
completeness, but is as inhomogeneous as possible. Second, assigning each data point
to a distinct cluster satisfies perfect homogeneity, but is poor in terms of completeness.
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Formally, this is expressed in terms of conditional entropy with some normalization
effort to satisfy the convention of 1 being desirable and 0 undesirable.

homogeneity completeness

H(C|K) = −

|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|C|
c=1 ack

H(K|C) = −

|C|∑
c=1

|K|∑
k=1

ack
N

log
ack∑|K|
k=1 ack

H(C) = −

|C|∑
c=1

∑|K|
k=1 ack

N
log

∑|K|
k=1 ack

N
H(K) = −

|K|∑
k=1

∑|C|
c=1 ack

N
log

∑|C|
c=1 ack

N

h =

1 if H(C,K) = 0 ,

1−
H(C|K)
H(C) else

c =

1 if H(K,C) = 0 ,

1−
H(K|C)
H(K) else.

Finally, the V-Measure is computed as the harmonic mean of distinct homogeneity
and completeness scores, allowing them to be weighted to favor one’s contribution
over the other (similar to the popular F-Measure for precision and recall):

Vβ =
(1+β) · h · c
(β · h) + c

.

We observe, that H(C|K) is directly related to what we referred to as Entropy
above (see Equation (2.2)), because

∑|C|
c=1 ack = nk. Also ack

N = P(cluster k, class c) =
P(cluster k) · P(class c | cluster k) = nk

N ·
aij
nj

again as in the Entropy definition by
Rosenberg and Hirschberg (see [46]). Therefore, the only difference is the normaliza-
tion factor of 1/ logn in the Entropy definition.

2.3 balanced clustering

In many applications having empty or very small clusters is undesirable and it is
required that clusters obtained are balanced, meaning of approximately the same
size. This balancing requirement comes from the associated application rather than
from the inherent properties of the data, and helps in making the clusters actually
useful and actionable. Some specific examples given by Banerjee and Ghosh are
Direct Marketing, Category Management, Clustering of Documents and Balanced
Clustering in Energy Aware Sensor Networks. In content-based image clustering,
which is the focus of this thesis, balancing helps in making the clusters useful for
browsing because the user orientation in the dataset largely relies on the regular
structure of the clustering tree.

Clustering methods are said to be dilating if individual elements not yet in groups
are more likely to form new groups instead of being merged to existing ones. Dilating
methods like complete linkage have the advantage that they produce balanced trees,
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which are useful for browsing. In contrast, single linkage is known to create very
deep and unbalanced trees (see [8, 13]).

Balancing constrained clustering may yield solutions that are of poorer quality
than non-constrained approaches, when measured by a data-driven criterion such as
the squared error objective function (k-means), even though these same solutions are
more preferable from the application viewpoint. Surprisingly, balanced clustering has
been proven empirically to produce comparable and sometimes even better results
than their non-constrained counterparts despite the assumption of all clusters having
the same prior probability/number of samples. This has been explained by the fact
that balancing provides a form of regularization that seems to avoid low-quality
local minima stemming from poor initialization (see [5]). In addition to application
requirements, balancing can be helpful because it tends to decrease sensitivity to
initialization and avoid outlier clusters (highly underutilized representatives) from
forming, and thus has a beneficial regularizing effect even in situations where bal-
ancing is not a requirement. The initialization dependence gets worse when input
dimensionality as well as the number of clusters is high, thereby vastly expanding the
solution space (see [4]). It has been shown that even tough k-means has an implicit
way of preventing highly skewed clusters (see [37]), it often generates empty or
extremely small clusters, especially in high-dimensional space (see [3]).

Banerjee and Ghosh summarize existing approaches to balanced clustering in [3].

General Approaches

One approach is to convert the clustering problem into a graph partitioning problem,
which is then solved by a min-cut algorithm. However, this method does not scale
well, due to its O(N2) complexity.

Banerjee and Ghosh present an O(kN logN) scheme, that can be broken down into
three steps - sampling, soft-balanced clustering of the sampled set and populating,
and refining the clusters while satisfying balancing constraints. The algorithm for
populating the clusters is based on a generalization of the “stable marriage” problem,
whereas the refinement algorithm is a constrained iterative relocation scheme (see
[3, 4, 5]).

Hierarchical Agglomerative Approaches

Agglomerative clustering methods can be adapted so that once a cluster reaches a
certain size in the bottom-up agglomeration process, it can be removed from further
consideration.

A similar approach was proposed by Borth et al., who introduce a weighted penalty
term depending on the cluster size (see [8]). Thereby, they enhance Average Linkage
to the so-called Balanced linkage. Formally, we obtain f(dhi∗ ,dhj∗ ,nh,nl,kh,kl) :=
1

nh·nl ·
∑
x∈kh

∑
y∈kl d(x,y) +α · (nh +nl) (see Algorithm 2).
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A major problem of hierarchical agglomerative approaches is scalability, since they
require a distance matrix of size O(N2).

k-means-based Approaches

A first approach is to iterate over k-means, but to do the cluster assignment (step
2.a in Algorithm 1) by solving a minimum cost flow problem satisfying balancing
constraints. This approach is O(N3) and thus has even poorer scaling properties than
the hierarchical agglomerative methods above (see [3]).

Balancing can also be achieved by formulating the cluster assignment step of
k-means as a Linear Program and explicitly adding constraints to the optimization
problem, requiring that each cluster contains at least a certain number of points (see
[9]).

A last class of algorithms is called Frequency Sensitive Competitive Learning algo-
rithms (FSCL). FSCL was originally formulated to remedy the problem of under-
utilization of parts of a codebook in vector quantization (see [2]). The employed
distance measure is weighted by the number of assignment to the respective cluster.
Formally, a data point x is assigned to the k∗-cluster, such that k∗ = argmini[F(ni) ·
d(vi, x)], where ni is the cluster size, vi the cluster centroid of the i-th cluster and F an
increasing function of the cluster size. During the next iterations the distance measure
for large clusters increases, hereby equalizing the number of assignments over time
(see [47]). Although frequency sensitive assignments can give fairly balanced clusters
in practice, there is no obvious way to guarantee that every cluster will have at
least a certain number of points (see [5]). A convergence study on FSCL algorithms
has shown that only conditions on the learning rate must be imposed to guarantee
convergence to a locally optimal solution (see [25]).





3
C L U S T E R I N G F O R I M A G E B R O W S I N G

While the previous chapter dealt with clustering and balancing strategies in gen-
eral, we turn towards the specific application of content-based image clustering and
browsing. This chapter first discusses related work on this topic. Then, particular
requirements of clustering posed by the application of image browsing are summa-
rized. Third, an approach for efficient and scalable image clustering is proposed
based on a balanced online variant of the hierarchical k-means algorithm. We call this
method hierarchical balanced online k-means, or short hbo-k-means. It constitutes one
of the main contributions of this thesis.

3.1 content-based image clustering

This section gives a brief overview of related work on content-based image clustering.
Due to space limitations, we only review work most related to ours.

Navidgator, a system for similarity-based browsing of multimedia databases pro-
posed by Borth et al., provides the basis for this thesis (see [8]). A balanced linkage
method for hierarchical agglomerative clustering is introduced to enforce balanced
tree structures. In addition, a Graphical User Interface is presented to navigate
through a database of video keyframes, offering a coarse-to-fine similarity-based
view of the grouped content. The authors also observed that a similarity-based one-
dimensional sequence is obtained as a by-product in the proposed clustering process.
Parts of this sequence correspond to clusters of high similarity at lower levels of the
tree. The concept of these parts containing similar content is called Content-Stripes.
This concept is illustrated in Figure 3. Content-Stripes replace the need to additionally
compute spatial arrangements for images within a cluster like it is done with simi-
larity pyramids (see [11]). Therefore, a similarity-based order is created in addition
to the hierarchical clustering structure in one single step instead of separating these
tasks (see [8]). In Section 3.3 a k-means-based clustering approach will be proposed
to enhance the Navidgator back-end in terms of balancing and scalability.

Chen et al. introduce the concept of a similarity pyramid for content-based browsing
of large image databases (see [11]). The similarity pyramid represents the database
whereas different layers in the pyramid correspond to varying levels of detail, such
that similar images are located nearby each other on a 2D grid of images. They use
hierarchical agglomerative clustering with a sparse proximity matrix, only containing
the closest M matches of each sample (M < N) to reduce the complexity to O(MN).
This approach is called fast sparse clustering. However, to find those M matches an

17
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Figure 3: A tree representation of a sample clustering, transformed to a Content-Stripe dis-
playing similarity clusters in an one-dimensional order (image and caption from
[8]).

additional top-down clustering of the whole data set is required. Also, the clustering
algorithm only generates binary tree structures,which need to be transformed into
quad-trees (with a branch factor of 4). Here, balancing is incorporated in the cost-
function, which optimizes the mapping of the quad-tree to the pyramid, minimizing
spatial variations within a cluster.

Chen et al. try to bridge the semantic gap by clustering, stating the hypothesis
that “semantically similar images tend to be clustered in some feature space” (see
[13]). They introduce CLUster-based rEtrieval of images by unsupervised learning (CLUE),
which attempts to capture semantic concepts by retrieving image clusters instead of
an ordered list of images as conventional image-retrieval systems do. Käster et al.
add the applicability of image clustering techniques to scale up content-based image
retrieval systems (see [36]). Clustering also can be used to restrict the search space
and to avoid exhaustive comparisons. This does not only speed up the search process,
but may also improve search results.

Goldberger et al. propose continuous image modeling based on mixtures of Gaus-
sian densities, grouping pixels into coherent regions in feature space (see [27, 28]).
These are then clustered bottom-up, using the Information Bottleneck principle: Im-
ages are grouped so that the mutual information between the clusters and the
image content is maximally preserved. Due to a Monte Carlo simulation for the
Kullback-Leibler-distance approximation the method is computationally expensive
and therefore not applicable to large-scale image clustering.

Yeung et al. use a time-constrained clustering to extract story units from videos for
browsing and navigation (see [56]). Better video organization is achieved by clustering
similar video shots into scenes, using both visual similarities and temporal localities
of the shots.
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Finally, Nister and Stewenius propose a large-scale object recognition scheme
which builds on local region descriptors (see [45]) These are hierarchically quantized
in a codebook or vocabulary tree. This vocabulary tree allows are larger and more
discriminatory vocabulary to be used efficiently.

3.2 particular requirements

Basically, there are three particular requirements that should be met by clustering
algorithms for image browsing, namely quality, scalability and balancing.

Quality

First, the produced clusters should be of be a certain quality to be actually useful for
the task. That is, the partitioning into clusters must adhere to semantic classes which
are helpful to the user. These semantic classes could consist of images of the same
object (e.g. “spider”), or of the same picture series, or showing the same semantic
concept like “france” or “dog”. Recall that the partitioning into the “correct” clusters
is non-trivial due to the subjectivity of the task and the semantic gap (see Chapter 1).

Scalability

Second, the clustering algorithm needs to be able to cluster large-scale image col-
lections, using only a reasonable amount of resources. Hence, scalability is required,
which is mainly imposed by the advent of large image databases not only in com-
mercial but also in private environments. Whereas the systems proposed in [8] and
[11] have only been tested on datasets with up to 10.000 images, new clustering ap-
proaches should be able to process up to 1 million images. Therefore, all approaches
in Ω(N2) (particularly, hierarchical agglomerative clustering) are not applicable.

Balancing

Third, we demand that the clusters obtained are of approximately the same size,
which we refer to as balancing. As already motivated in Section 2.3, this requirement
arises from application needs rather than from inherent properties of the data, i.e.
balancing helps in making the clusters useful for browsing. Balanced trees are more
likely to represent the semantic complexity of the dataset in a comprehensible way
than deep and unbalanced ones, because they try to equally distribute the semantic
complexity on each single level. In addition, regular structures help the user browse an
image collection to orient themselves in the dataset. Unbalanced trees contain leaves
on very different levels. Thus, very small and specific and very large and unspecific
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clusters may occur on the same level. Therefore, the depth in the tree cannot be
utilized properly for user orientation (which is done for instance in Navidgator).
Consequently, the individual interaction possibilities have different effects depending
on the current node of the tree. This confuses the user while browsing and leads to
a bad user experience. We assume that it is intuitive to split the clusters into equal
parts on each level to appropriately distribute the inherent complexity of the data.
Thus, unbalanced trees can be said to be result of non-intuitive splits on upper levels
of the tree. In conclusion, unbalancing takes away the regular structure of the tree on
which the user orientation implicitly relies.

3.3 our proposed approach: hbo-k-means

Before going into detail how balancing can be enforced in a simple and efficient way,
we take a look at the overall top-down structure of the hierarchical k-means algorithm
which will be applied to clustering of image collections (see [45]).

3.3.1 General Functionality

Let us first look at the general approach to produce a nested series of partitions,
which will be represented by a tree structure. Note that not only the pure cluster
partitioning is of interest but also the relationship between different clustering levels
(subcluster partitions etc.; see [8]).

An algorithmic description of the hierarchical k-means algorithm (h-k-means) can be
found in Algorithm 3.

Algorithm 3 Hierarchical k-means (h-k-means)

1. Initialize a tree structure with a root node containing the whole dataset D.

2. While the tree has leaf nodes that contain more than threshold images do:

a) Choose one of these nodes and use the k-means algorithm to partition its
images (using a prespecified branch factor as the number of clusters).

b) Use these partitions to create children of the current node.

In the experiments, a threshold of 4 is used, meaning that a leaf node is not subdi-
vided further if comprising four or less images.
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3.3.2 Efficient Balancing

In the k-means algorithm a distance measure (namely the euclidean distance) is
used to decide which cluster centroid vi is nearest to a given data point x (step 2.a
of Algorithm 1). Assume that x is distributed according to a mixture of isotropic
Gaussians with a uniform prior. Thus, covariance matrices Σi = I are used, where I is
the identity matrix. Then, the data point is assigned to cluster k∗-th cluster, such that:

k∗ = argmaxi logP(ki|x)

= argmaxi log
P(x|ki) · P(ki)

P(x)

= argmaxi logP(x|ki)

= argmaxi log[
1√

(2π)d|I|
exp(−

1

2
(x− vi)

T I−1(x− vi))]

= argmaxi −
1

2
d(x, vi)2 + const.

= argmaxi −d(x, vi)
= argmini d(x, vi) .

Frequency Sensitive Competitive Learning algorithms (FSCL) utilize the use of a
distance measure to incorporate balancing. This class of algorithms multiplies the
distance term by a fairness function F, which is an increasing function of the cluster
size. Formally, x is assigned to the k∗-th cluster, such that

k∗ = argmini[F(ni) · d(x, vi)] ,

where ni is the cluster size and vi the cluster centroid of the i-th cluster. Usually F is
the identity function (see [25, 47]). A similar approach was proposed by Banerjee and
Ghosh, where a frequency sensitive learning mechanism was derived from a mixture
of Gaussians framework by making each of the Gaussians shrink in proportion to the
number of points that have been assigned to it [4].

Here shrinking means that the density gets more peaked by using covariance
matrices Σi = 1

ni
I, where again I is the identity matrix, and maximizing the log-
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likelihood of a particular point x with respect to this Gaussian, results in assigning
point x to cluster k∗ such that:

k∗ = argmaxi logP(ki|x)

= argmaxi log
P(x|ki) · P(ki)

P(x)

= argmaxi logP(x|ki)

= argmaxi log[
1√

(2π)d|Σi|
exp(−

1

2
(x− vi)

TΣ−1i (x− vi))]

= argmaxi −
ni
2
d(x, vi)2 +

d

2
logni −

d

2
log 2π

= argmini ni · d(x, vi)2 − d logni ,

where vi is the centroid of the i-th cluster and d is the dimensionality of the data.
Thus, formal treatment results in an additional term, namely −d logni and it has been
shown that FSCL methods essentially perform frequency sensitive cluster deformation
by shrinking Gaussians (see [4]).

While these balancing approaches were demonstrated to work well on low-dimensio-
nal synthetic datasets, they were experienced as very unstable in high-dimensional
feature space. Especially applied in batch-based k-means, these approaches were ex-
perienced to deteriorate cluster balancing due to a very high sensitivity to very small
and very large clusters. For instance, if the clustering was initialized with regular
k-means, sometimes very small outlier clusters occur (using a random initialization
this is usually worse). The frequency sensitive distances to these clusters are so small
that in one iteration (almost) all samples are assigned to them, creating a number
of other empty or very small clusters, which again attract all samples in the next
iteration, leading to degenerate solutions of extremely inbalanced clusters. See table 1

for an illustrating sample run. To some extent, this can be blamed on what we call
“temporal bias”, because in each iteration all N data points are assigned to clusters,
resulting in very different clusters and cluster sizes compared to the previous iteration.
Using an online approach it is possible to reestimate cluster sizes after each new
assignment, yielding a more stable behavior. Unfortunately, “oscillations” of very
small clusters becoming very large and vice versa still occur even though less often.
Additionally, these methods seem to be very dependent on the initialization and
tuning parameters where required. Using the same tuning parameters produced very
different results on different datasets ranging from satisfying to degenerate solutions.
Therefore, a different approach to incorporate balancing is proposed in the following.

Strategy 1: Online Approach

The concept of “temporal bias” was introduced above to explain the instability of
batch-based approaches. To prevent oscillation of cluster sizes, cluster assignments are



3.3 our proposed approach: hbo-k-means 23

iter . cluster sizes

1 100 100 100 100 100 100 100 100 100 100 100 100 100

2 37 59 16 358 68 228 154 141 84 23 26 37 69

3 111 22 47 2 55 1 66 120 11 324 336 76 129

4 347 1 3 2 3 1 36 869 0 0 0 38 0

5 0 103 267 71 61 1 615 0 0 0 0 182 0

6 1300 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: A sample run illustrating the “oscillations” in cluster sizes and convergence to a
degenerate solution. This can be partly blamed on what we call “temporal bias”.

interleaved with cluster size estimation. Essentially, this results in an online approach
that reestimates cluster sizes after each new assignment. Our proposed method uses
this online approach and will be demonstrated to be more stable than the FSCL
methods introduced above (see Chapter 4).

Strategy 2: Frequency Sensitive Prior Adaption

Instead of cluster deformation as in the derivation above, the key idea of this new
approach is to adapt the prior probability of the cluster P(ki) to favor small clusters
over larger ones. Whereas Banerjee and Ghosh assumed a uniform prior (which
vanishes because it is independent of i; see [4]), P(ki) is now assumed to decrease
for growing clusters, formally P(ki) = exp(−ni)/

∑m
j=1 exp(−nj) while the shape of

clusters remains unchanged, i.e. P(x|ki) = N(x, vi, I). Now we obtain:

k∗ = argmaxi logP(ki|x)

= argmaxi log
P(x|ki) · P(ki)

P(x)

= argmaxi logP(ki) + logP(x|ki)

= argmaxi log[exp(−ni)/
m∑
j=1

exp(−nj)] + logN(x, vi, I)

= argmaxi −ni − d(x, vi)2 + const.

= argmini ni + d(x, vi)2 .

We see that a change of prior leads to an additive bias of ni instead of a multiplicative
one.
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This single additive bias serves as the basis for our proposed approach. To have
control over the balancing behavior, a variable α is introduced to weight the influence
of the cluster size. This approach has already been suggested by Borth et al., who -
instead of multiplying the distances by cluster size - introduced an additive weighted
penalty term depending on the cluster size (originally to enhance average linkage
hierarchical agglomerative clustering). Formally, k∗ = argmini[d(vi, x) + α · ni] for
0 6 α <∞. Although this weight needs to be tuned to achieve the expected behavior,
this method will be demonstrated to be much more stable for both batch and online
approaches in our experiments compared to the FSCL methods discussed above. In
the original paper the α value was empirically evaluated and set to α = 0.01.

However, this fixed value of α is feature- and data-dependent and certainly not
intuitive. Thus, the approach is extended to the following more flexible model, which
allows to continuously trade off true feature similarity against balancing constraints:

k∗ = argmin
i

[(1−β) · d(vi, x) +β ·α ·ni] ,

where a reasonable value for α is estimated from the given data and 0 6 β 6 1 is
the only true parameter. For a value of β = 0.5 both distance-based similarity and
cluster-size-based penalty should be weighted equally “on average”, which means
that for the average cluster size of N/m and x ∈ D we postulate that:

average[d(vi, x)] = α · average[ni] = α ·
N

m
.

average[d(vi, x)] is estimated by computing and averaging a sufficiently large number
of distances between random data points in the given feature space, referred to as
avg_randomdist. Thus, it is possible compute α = avg_randomdist · mN . Now, the
convenient parameter β allows to continually and intuitively trade off true feature
similarity against balancing constraints.

Balanced Online k-means

Algorithm 4 is a description of our balanced online k-means algorithm (bo-k-means),
which will provide the basis for our proposed hbo-k-means algorithm for clustering
image collections. Like the other introduced approaches, bo-k-means belongs to the
class of Frequency Sensitive Competitive Learning algorithms. However, an additive
bias is used instead of a multiplicative one as described above.

The learning rate is an important detail in online learning algorithms. In Step 5.a)v
it was defined by vk∗ := vk∗ + (1/nk∗) · (x− vk∗), which is just a recursive form to
compute the centroid of nk∗ data points. If the data is obtained from a stationary
process (i.e. no change in parameters of the underlying generative model over time),
then the centroid (as computed by the above recursion) will converge, and does not
need updating after a sufficiently large number of iterations (see [4]).
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Algorithm 4 Balanced Online k-means (bo-k-means)

1. Initialize cluster centers vi, i = 1, ...m with randomly-chosen data points x ∈ D.

2. Compute the cluster sizes ni, i = 1, . . . ,m by assigning each data point using
euclidean distance.

3. Estimate avg_randomdist by averaging a sufficiently large number of distances
between random data points and compute α = avg_randomdist · mN .

4. Precompute a random permutation of the dataset, which defines the order of
the data points in the loop. Note that it might be necessary to iterate over the
dataset multiple times.

5. For a prespecified number of iterations or until convergence:

a) For all data points in the order of the random permutation:

i. Let x be the current data point and l the index of the cluster it is
currently assigned to.

ii. Compute to which cluster x should be assigned to:

k∗ = argmin
i

[(1−β) · d(vi, x) +β ·α ·ni] .

iii. Update cluster sizes:

nk∗ := nk∗ + 1 , nl := nl − 1 .

iv. Update the cluster assignment of x to cluster k∗.

v. Update the centroid of cluster k∗:

vk∗ := vk∗ + (1/nk∗) · (x− vk∗) .

b) After each epoch (full run over the dataset):

i. Check for empty clusters and reinitialize the cluster centroid randomly
if necessary.

ii. Check for convergence by computing the ratio of different assignments
compared to the previous epoch. If this ratio is below convergence-

threshold return the cluster assignment.
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We now call the variant of the h-k-means algorithm (see Algorithm 3), where the
regular k-means in step 2.a is replaced with the just described bo-k-means algorithm
hbo-k-means. It will become evident from the experiments in Chapter 4 that the
proposed method is able to cluster large-scale image collections efficiently, producing
extremely balanced clustering trees of high quality.



4
E X P E R I M E N T S

This chapter provides a description of the conducted experiments and their experi-
mental results after describing the used datasets and feature descriptors.

In Experiment 1 k-means is compared to a number of hierarchical agglomerative
approaches using multiple different features. Here, k-means will be demonstrated to
be suitable for content-based image clustering.

The impact of a hierarchical top-down approach is quantitatively investigated in
Experiment 2, where cluster quality is evaluated on different levels of the hierarchy.
It will be shown that hierarchical k-means methods do not necessarily perform worse
than hierarchical agglomerative approaches but yield substantial speed benefits.

The third experiment was conducted to demonstrate the impact of our proposed
balancing approach bo-k-means. We will see that we can obtain balanced clusters effi-
ciently while preserving or even improving cluster quality. In addition, the proposed
balancing approach will be found to outperform FSCL methods in terms of stability.

In Experiment 4 the behavior of balancing approaches is examined in a hierar-
chical setting where our both our proposed hbo-k-means algorithm and a balanced
hierarchical agglomerative clustering method are compared to their unbalanced
counterparts.

Finally, the proposed method hbo-k-means is demonstrated to be scalable on a
large-scale dataset and it will be shown that both cluster quality and balancing seem
to be independent of the used branch factor.

4.1 datasets

Multiple clustering approaches are evaluated on six different datasets with different
characteristics. corel-13 and corel-45 are subsets of different sizes of the well known
Corel Photo CDs, which have become a de-facto standard in the field of content-based
image retrieval (see [43]). They contain images from different countries and cities all
over the world. The netclean dataset contains series of pornographic images (which
also constitute the target clustering) and was provided by Netclean Technologies, a
partner in the FIVES Project with the goal to ban child pornography from the internet
(see [30]). Another dataset used is the caltech-256 Object Category Dataset, which
is intended to facilitate computer vision research (see [29]). It contains images of
256 different object categories. This dataset is of special importance, because first,
hierarchical agglomerative approaches meet their computational limits with 30k
samples and second, its clusters are not of equal size, which violates the implicit

27
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assumption of all balancing approaches. From Chapter 1 it is known that content-
based image clustering is also very important in the video domain. Thus, two more
datasets are added. Both the youtube and the youtube-large dataset consist of randomly
sampled keyframes of YouTube videos of different semantic categories or concepts
which were inferred from user-generated tags. Table 2 summarizes the number of
sample images, the number of clusters and the variation in cluster sizes for each
dataset.

For all these datasets target categories are defined, which is used by external
cluster validity measures. Note that these category labels are subjective in nature and
partially represent very high-level concepts like “france” or “ireland”. Identifying
these concepts from raw images might even be very hard for humans in some cases.
Sample images illustrating the intra-cluster variance are shown in Figures 4, 5, 6,
7, 8 and 9. Also, weaknesses of tagging approaches mentioned in chapter 1 can be
observed. For example, one image of Figure 9 shows the American football star
Michael Vick, who was convicted of dog fighting. Even images of cats or basketball
show up, because these scenes were part of videos which were tagged with “dog” by
a YouTube user. Due to the random keyframe extraction also black keyframes appear
in the dataset. For obvious reasons is not possible to meaningfully assign them to a
specific semantic cluster. Therefore, perfect results are not to be expected.

Figure 4: Sample images of the “singapor” category of the corel-13 dataset.

4.2 features

Several features are used in the experiments to largely cover the current state-of-the-
art features available for content-based image systems. These features are described
below.
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Figure 5: Sample images of the “france” category of the corel-45 dataset.

Figure 6: Sample images of the 50-th category of the netclean dataset.
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Figure 7: Sample images of the “spider” category of the caltech-256 dataset.

Figure 8: Sample images of the “soccer” category of the youtube dataset.

Figure 9: Sample images of the “dogs” category of the youtube-large dataset.
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dataset #images /
#clusters

cluster

sizes

ground

truth

partitioning

example

categories

corel-13 1300 / 13 100 same country or
city

ny-city, singapor,
thailand

corel-45 4500 / 45 100 same country or
city

japan, washing-
ton, kyoto

netclean 2000 / 200 10 same picture se-
ries, usually same
location and per-
son

serially num-
bered

caltech-256 29780 / 256 80-800 same object cate-
gory

american-flag,
boxing glove,
fried-egg

youtube 5000 / 10 100 tagged with the
same YouTube
Tag

cats, helicopter,
soccer

youtube-large 716266 / 225 226-8606 tagged with the
same YouTube
Tag

furniture, driver,
tony-blair

Table 2: An Overview of all datasets used in this thesis.

4.2.1 Color Histograms

The color histogram, introduced by Swain and Ballard, is probably the most commonly
used descriptor for images and describes the global distribution of colors in a picture.
Statistically, a color histogram is a way to approximate the joint probability of the
values of the three color channels (RGB, HSV, etc.). It is defined by:

hA,B,C(a,b, c) = N · P(A = a,B = b,C = c) ,

where N is the number of pixels in the image. Depending on the requirements, the
individual axes of the color space can be quantized differently, determining the length
of the descriptor. For convenience this 3D representation is usually transformed into
a 1D vector (see [53]).
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4.2.2 Color Layout Descriptors

One color descriptor of the Multimedia Content Description Interface (MPEG-7 Stan-
dard; see [49]) is the color layout descriptor (CLD). CLD is a compact 12-dimensional
descriptor that uses representative colors on an 8x8 grid followed by a Discrete cosine
transform (DCT) and encoding of the resulting coefficients. The feature extraction
process consists of two parts; grid based representative color selection and DCT
transform with quantization. An input picture is divided into 64 blocks and their
average colors are computed. This partitioning process is important to guarantee
resolution or scale invariance. The derived average colors are transformed into a
series of coefficients by performing DCT. A few low-frequency coefficients are selected
using zig-zag scanning and quantized to form a CLD (see [41]).

4.2.3 Color Moments

Stricker and Orengo state that it is hard to find an optimal color space quantization
and that furthermore even an optimal quantization will produce unwanted quantiza-
tion effects. Therefore they proposed instead of storing complete color distributions
to store only their dominant features, and showed that this feature has the potential
to outperform histogram-based methods in the robustness of the results as well as in
terms of retrieval speed.

From probability theory we know that a probability distribution is uniquely char-
acterized by its moments, resp. central moments. Thus, if we interpret the color
distribution of an image as a probability distribution, the color distribution can be
characterized by its moments as well. Stricker and Orengo propose to store the first
three moments (average, variance and skewness) of each color channel. To make
them comparable in terms of unit, the standard deviation and the third root of the
skewness are used. If the value of the i-th color channel at the j-th image pixel is pij,
then the average Ei, standard deviation σi and third root of the skewness si are (see
[52]):

Ei =
1

N

N∑
j=1

pij , σi = (
1

N

N∑
j=1

(pij − Ei)
2)

1
2 and si = (

1

N

N∑
j=1

(pij − Ei)
3)

1
3 ,

which are concatenated to a 9-dimensional feature (HSV color space).

4.2.4 Color Correlograms

Whereas color histograms are fast to compute, they fail to describe the spatial dis-
tribution of colors the image. Several approaches were proposed to integrate spatial
information with color histograms. One frequently used spatial correlation descriptor
is the correlogram by Huang et al. (see [30, 31]).
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The correlogram describes the spatial color correlation of pixels as a function of
their spatial distance: Given a color ci compute the probability P(ci, cj,dn) of finding
a color cj at distance dn, using D8 distance also known as chessboard distance.

The autocorrelogram is a simplified version of the correlogram and describes only
the probability of a pixel with color ci to find colors from the same bin at distance dn
(see [32]). Both the idea of the autocorrelogram and the D8 distance are visualized in
Figure 10.

Feng shows that correlation-based descriptors are more stable to color changes
than color histograms (see [24]). Changes in color tend to have big effect on color
histogram but noticeably less effect on correlation descriptors. In addition, he points
out that changes in appearance such as cropping have less influence on correlation
descriptors than on color histograms, and that correlation-based descriptors are more
robust to changes in contrast and brightness (see [24, 30]).

Figure 10: The functionality of the autocorrelogram (image and caption from [30]).

The Modified Autocorrelogram

To overcome the complexity issues of correlograms and autocorrelograms, Hofmann
and Ali propose a modified autocorrelogram. Both the modified autocorrelogram and
the ordinary autocorrelogram describe the correlation of colors in an image. For
autocorrelograms the probability is computed that pixels of a given color ci have
pixels of the same color at various distances. To formally define the autocorrelogram
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let p1 be the center pixel of the mask, p2 any other pixel inside the mask and let k
denote the distance (using the L∞-norm) between p1 and p2. For a pixel p = (x,y) ∈ I,
let I(p) denote its color and let Ic := {p | I(p) = c} (see [30, 32]):

γ
(k)
ci (I) := P[p2 ∈ Ici | p1 ∈ Ici , ||p1 − p2|| = k] .

The modified autocorrelogram now neglects the distinction between various distances
and computes the overall probability for the center pixel of the mask of having
surrounding pixels in the same mask with the same color, or formally:

γci(I) := P[p2 ∈ Ici | p1 ∈ Ici ] .

Figure 11 demonstrates the idea of the modified autocorrelogram, which stores the
computed probability out of an area surrounding the pixel into a histogram. The
modified autocorrelogram used in our evaluation estimates the probability γci(I)
based on eight surrounding pixels inside the mask. In addition, a color histogram
in IHLS color space is concatenated to the modified autocorrelogram to improve the
performance, yet we will simply refer to this joint descriptor as correlogram. Overall a
600-dimensional image descriptor is obtained (see [30]).

Figure 11: The idea of the modified autocorrelogram (image and caption from [30]).

4.2.5 Tamura Histograms

Tamura et al. propose six texture features corresponding to human visual perception:
coarseness, contrast, directionality, line-likeness, regularity, and roughness (see [54]).
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From experiments testing the significance of these features with respect to human
perception, it was concluded that the first three features are very important. Thus, in
our experiments coarseness, contrast, and directionality are used to create a histogram
describing the texture. Examples to illustrate the meaning of these features are given
in Figure 12. Histograms of these features are often used to describe texture properties,
for example in the QBIC system (see [20, 23]). In the following we will refer to them
as Tamura Histograms.

(a) (b) (c) (d) (e) (f)

Figure 12: Example images for texture properties: a) high coarseness b) low coarseness c) high
contrast d) low contrast e) directed f) not directed (images and caption from [19]).

4.2.6 Visual Word Representation

Visual word representations are a standard feature in object recognition and concept
detection and are usually based on local SIFT features introduced by Lowe (see [40]).
After these local SIFT features or patches have been extracted, they are clustered to
form a codebook of visual words. Each image is then represented by a vector containing
the quantities of appearance of each visual word in the image (similar to the bag-of-
words representation known from text retrieval). Because these representations are
usually very high-dimensional, a dimensionality reduction using probabilistic Latent
Semantic Analysis (pLSA) is performed as proposed by Sivic et al. (see [50]). While this
visual word representation often outperforms other features, it is computationally
expensive, because hundreds or thousands of patches need to be extracted for each
image, which then need to be clustered in a preprocessing step to form the codebook.

4.3 experiment 1 - comparison of methods and features

An experiment is conducted to address the following two questions. First, how
does k-means perform in comparison to hierarchical agglomerative approaches? And
second, which features are suitable for the image clustering task and should be
focused on in the next experiments?

Therefore, all non-hierarchical (or flat) clustering techniques are compared for all
described features on all datasets except youtube-large which will only be used at
the end for the large-scale experiment.
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Technical Details

As introduced in Subsection 4.2.4, correlogram refers the compound feature consisting
of the modified autocorrelogram and a color histogram in IHLS color space. chist6
means that each axis in RGB color space is quantized into six bins, the same holds
for the Tamura Histogram. viswords2000 refers to the visual word representation
using a total of 2000 visual words. Similarly, viswordsplsa64 refers to the same visual
word representation, but with an additional pLSA dimensionality reduction to 64

dimensions (see Subsection 4.2.6).
The conditional entropies H(Cluster|Class) and H(Class|Cluster) refer to the two

parts introduced in section 2.2, which are combined to the V-Measure. In this thesis
a beta value of 1.0 is always used for the V-Measure. Note that all measures in the
left column should be high, whereas the entropy-based measures in the right column
should be low.
k-means and online k-means are compared to hierarchical agglomerative approaches

with different linkage methods and different distance measures, which are referred
to as “hierarchical linkage/distance” in the plots. For the hierarchical agglomerative
approaches the pyClustering library by De Hoon et al. is used (see [17]). Table 3 gives
an overview of the evaluated linkage methods and the distance measures used. Note
that the plots only contain complete and average linkage approaches, since single
linkage produces even more unbalanced clusters (which are definitely not suitable
for image clustering) and centroid-linkage is computationally even more expensive
while producing clusters of inferior quality.

The number of clusters was set to the true number of clusters given by the ground-
truth partitioning of the datasets. For the hierarchical agglomerative approaches the
resulting tree (or dendrogram) is cut at a specific level, so that the desired number
of clusters is obtained. For each k-means clustering three runs are allowed and the
result with the lowest squared error measure is picked.

A sufficiently large maximum number of iterations () was used to allow the
algorithm to converge to a local minimum.

Discussion

The results of Experiment 1 can be found in Figures 13, 14, 15, 16 and 17. Obviously,
the datasets offer differently demanding tasks. For already mentioned reasons, per-
formance is low especially for the youtube dataset. In contrast, the same methods
perform very good on the netclean dataset with up to 90% V-Measure and a Weighted
Purity of over 70%, meaning that on average 7 out of 10 images of the same series
end up in the same cluster.

From the difference between Purity and Weighted Purity it can be concluded that
Purity is not suitable to evaluate highly unbalanced clusterings as produced by the
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linkage method abbreviation

Single-linkage ’s’

Maximum- (or complete-) linkage ’m’

Average-linkage ’a’

Centroid-linkage ’c’

distance measure abbreviation

Pearson correlation coefficient ’c’

Absolute value of the Pearson correlation coefficient ’a’

Uncentered Pearson correlation (equivalent to the cosine of the
angle between two data vectors)

’u’

Absolute uncentered Pearson correlation ’x’

Euclidean distance ’e’

City-block or Manhattan distance ’b’

Table 3: An Overview of all linkage methods and distance measures used for hierarchical
agglomerative clustering (see [17]).

hierarchical agglomerative approaches as discussed in section 2.2. Average linkage
approaches tend to achieve a very high Purity and very low H(Cluster|Class), because
they usually produce one giant cluster containing almost all images and multiple
very pure but very small clusters. This can also be seen in the high H(Class|Cluster)
value, because this giant cluster cannot be homogeneous.

From the plots it can be observed that the correlogram feature consistently performs
superior in terms of Weighted Purity and V-Measure for k-means and maximum
linkage methods. It is only outperformed by the higher dimensional color histogram
and the much more complex viswordsplsa64 feature on the youtube dataset. On all
other datasets the correlogram feature performs 20%-43% better for Weighted Purity
and 8%-67% better in terms of V-Measure than the second best feature.

As a key result, k-means proves to be suitable for image clustering outperforming
second best methods on 3 of 5 datasets by 22%-25% and performing only slightly
worse on the netclean dataset (-3%) and the youtube dataset (-9%) compared to the
best method.

It can be concluded that k-means performs surprisingly well compared to the
computationally more expensive hierarchical agglomerative methods, which largely
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suffer from producing unbalanced structures. Thus, k-means can definitely be deemed
suitable for image clustering. Also correlograms outperformed other single features
in most cases. Therefore, only correlogram features are used in the next experiments.
Note, however, that the overall performance will likely improve when using an
adequate combination of multiple features (see [11, 36]).

4.4 experiment 2 - hierarchical clustering

One major drawback of top-down clustering approaches is that images (or data points
in general) which are placed in undesirable clusters are constrained to remain in
that branch of the tree (see [11]). The second conducted experiment addresses this
issue, and also other related questions: How much cluster quality is lost with the
hierarchical top-down approach of h-k-means compared to flat k-means? How does
h-k-means performance compare to hierarchical agglomerative methods? Finally, do
different branch factors for h-k-means have an impact on performance?

Technical Details

In reference to the first experiment, only correlogram features are used for this
experiment and evaluation is limited to Weighted Purity, V-Measure and Entropy. As
a representative for hierarchical agglomerative approaches hierarchical m/b is chosen,
because it was consistently among the best in the first experiment.

The performance of hierarchical clustering is evaluated by measuring performance
on every single level of the tree produced by the h-k-means algorithm. Thus, several
nested partitions of different numbers of clusters are analyzed. A complete partition-
ing of the image collection of a specific level of the tree is obtained by taking all nodes
of this level and also all leaf nodes which may have already occurred up to this level,
which is important to satisfy the completeness requirement. This way h-k-means

determines the number of clusters which is used for k-means and the hierarchical
agglomerative method, which both are able to produce clusterings for any number
of clusters. By applying k-means for specific numbers of cluster of the lower levels
of the tree, it can be exactly measured how much performance is lost due to “bad
decisions” on upper levels of the hierarchical h-k-means approach. The gray vertical
dashed line in every subplot represents the ground-truth number of clusters, where
the validity measures can be interpreted most easily. As in the first experiment three
runs are allowed for each k-means-based algorithm and the result with the lowest
squared error measure is chosen. Again, the number of iterations used is sufficiently
large to allow the algorithm to converge to a local minimum.
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Figure 13: Results of Experiment 1 for the corel-13 dataset. In terms of Weighted Purity and
V-Measure k-means outperforms other clustering techniques.



40 experiments

Figure 14: Results of Experiment 1 for the corel-45 dataset. Since the clusters obtained of
hierarchical agglomerative methods are very unbalanced, Purity completely distorts
the results. H(Class|Cluster) is high for average linkage methods, because one
giant cluster contains almost all images.
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Figure 15: Results of Experiment 1 for the netclean dataset. On this dataset the correlogram
feature performs consistently well for all clustering methods. However, it also
accomplishes good results on different datasets.
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Figure 16: Results of Experiment 1 for the caltech256 dataset. k-means is suitable for scal-
able image clustering, because it performs best in combination with correlogram
features for almost all datasets.
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Figure 17: Results of Experiment 1 for the youtube dataset. The overall performance is low
due to the high intra-class variance of the youtube dataset. The correlogram feature
is only outperformed by chist8 and viswordsplsa64.
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Discussion

Figures 18, 19, 20, 21 and 22 show the results of this experiment. The overall behavior
is coherent for all used validity measures and unsurprisingly k-means is consistently
superior to h-k-means.

One pattern is noticeable through all datasets. In general h-k-means as a top-down
approach performs better for a small number of clusters, the left side of all plots,
than the hierarchical agglomerative method, which works bottom-up. Accordingly,
this is reversed on the right side of the plots, where we have usually thousands
of clusters. In between, the point where agglomerative clustering starts to perform
superior depends on the dataset. This behavior can be explained by the constraint
that images which are placed in undesirable clusters remain in that branch of the tree.
These errors pile up over multiple iterations and lead to the described pattern.

The behavior on the netclean dataset differs from all other datasets. This is due
to the comparatively small cluster sizes of this dataset, which are obtained only at
the lower levels of the tree. On these lower levels the agglomerative approach and
k-means clearly but unsurprisingly outperform h-k-means. For all other datasets and
the ground-truth number of clusters k-means works better than h-k-means (by 5%-
19% for Weighted Purity and 7%-28% for V-Measure), which again outperforms the
agglomerative method (by 8%-24% for Weighted Purity and 7%-80% for V-Measure,
values for a branch factor of 2). Additionally, on all datasets except netclean the
performance methods “converge” to approx. the same value.

Another observation is that there is virtually no difference in performance for
different branching factors. The impact of different branch factors will be more
explicitly evaluated for the hbo-k-means algorithm in section 4.6.

In conclusion, h-k-means performs clearly superior for small numbers of clusters
whereas the hierarchical agglomerative method outperforms the top-down approach
on lower levels of the tree. For the ground-truth number of clusters it can be concluded
to lose performance of about 5%-19% for Weighted Purity and 7%-28% in terms of
V-Measure compared to the flat k-means approach.

Note that flat k-means merely constitutes a control run, since no hierarchical
structure is obtained which is needed for browsing. In addition, recall that h-k-means
leads to significant speed benefits compared to hierarchical agglomerative approaches.
Finally, it can be seen from the results that the branch factor seems to have almost no
impact on performance.

4.5 experiment 3 - the impact of balancing

As already described in Section 3.2, balancing is a important requirement for the task
of image clustering for browsing applications. From Experiment 1 it is evident that
while hierarchical agglomerative approaches produce very unbalanced structures,
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Figure 18: Results of Experiment 2 for the corel-13 dataset. It can be observed that top-down
methods are the best for small numbers of clusters (left) and bottom-up methods
for large numbers (right).



46 experiments

Figure 19: Results of Experiment 2 for the corel-45 dataset. The overall behavior is coherent
for all used validity measures, and unsurprisingly k-means is consistently superior
to h-k-means.



4.5 experiment 3 - the impact of balancing 47

Figure 20: Results of Experiment 2 for the netclean dataset. Due to the comparatively small
cluster sizes (of the ground truth partitioning) of the netclean dataset the behavior
on this dataset differs from all other datasets.
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Figure 21: Results of Experiment 2 for the caltech-256 dataset. Different branch factors tend
to have virtually no impact on performance.
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Figure 22: Results of Experiment 2 for the youtube dataset. It can be seen that the performance
for all methods “converges” to approx. the same value for the lower levels of the
tree.
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this is also to a lesser extent the case for the k-means algorithm. However, especially
when initialized poorly k-means will produce very small outlier clusters. It has been
introduced that balancing approaches can provide a form of regularization to avoid
low-quality local minima stemming from poor initializations. In this experiment
this is investigated quantitatively. More precisely the following questions are asked:
“What is the impact of the proposed balancing strategy both on the distribution of
cluster sizes and the quality of the obtained clusters?”, “How does the proposed
bo-k-means algorithm compare to other balancing approaches?” and “Does the
balancing approach generalize well with respect to different features?”.

Technical Details

In this experiment the balancing impact on flat clustering methods is investigated,
before proceeding to hierarchical approaches in the next experiment. Therefore, the
proposed bo-k-means algorithm is used (see Algorithm 4). Since results of k-means-
based algorithms depend on the quality of the initialization (especially because it is
done randomly) ten runs for each value of β are allowed. The colored points in the
plots depict the average value while the error bars represent the standard deviation.
In contrast to the previous experiments each of these 10 runs is in fact one single run
and is not initialized multiple times to pick the best result. The maximum number of
iterations was set to 50 full runs over the dataset (called epochs), but in most cases
the algorithm converged significantly earlier (a convergence_threshold of 2% was
used).

Now, we introduce three measures to evaluate balancing (see [4]). The standard
deviation in cluster sizes (SDCS) often helps in understanding the balancing behavior
of a clustering algorithm. In addition, it is useful to know whether an algorithm
produces very small or very big clusters. To quantify this behavior, we use the ratio
of the minimum cluster size to the expected cluster size under perfect balancing. We
refer to this as ratio of minimum to expected (RMinE). Analogously, we define the ratio
of maximum to expected (RMaxE). Formally:

SDCS = [
1

m

m∑
j=1

(nj −
N

m
)2]1/2 ,

RMinE = min
i

(ni)/(
N

m
) ,

RMaxE = max
i

(ni)/(
N

m
) .

In this experiment, Quality is measured by V-Measure and Weighted Purity, and
balancing by SDCS and minimal and maximal cluster size, which are proportional to
RMinE and RMaxE, as introduced above. Note that the Standard Deviation in Cluster
Sizes has its own y-axis on the right side of each subplot.
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Discussion

Figures 23 and 24 illustrate the results. Recall that through β true feature similarity
can be continuously traded off against balancing constraints. A value of 0 implies
no balancing at all while a value of 1 means solely relying on cluster sizes. Without
balancing very small and very large clusters occur, being strongly dependent on the
initialization. Balancing provides a strong regularization effect, which renders the
result almost initialization-independent (graphically the error bars disappear). Our
proposed balancing approach proves to be highly effective, rapidly forcing all cluster
sizes to be (almost) equal.

Balancing never deteriorates the cluster quality right away. Either the quality
stagnates up to a large value of β (e.g. on caltech-256) or balancing is able to improve
accuracy. This is especially evident on the netclean dataset, where for example
Weighted Purity goes up by 33%. Of course, quality quickly decreases for very large
values of β, because then the balancing algorithm merely equalizes the cluster sizes
regardless of the actual feature similarity.

From the results of the viswordsplsa64 feature of the youtube dataset it can be
concluded that our approach also generalizes to different features. However, the
balancing seems to effective more slowly. This is an important result because we
need to choose a fixed β value that is likely to perform well for unknown datasets in
practice.

Our proposed approach was also compared to different FSCL methods introduced
in subsection 3.3.2. Unfortunately, these approaches tended to be too unstable to be
suitable for thorough quantitative evaluation in our high-dimensional feature space.
Thus, they are not suited for the task of image clustering for browsing (for more
detail see subsection 3.3.2).

From the given results it can be concluded that our proposed balancing strategy
improves the distribution of cluster sizes strongly by producing more balanced
clusters. Additionally, for a wide stable range of the key parameter β our bo-k-means
method never impairs but in some cases even improves clustering quality. Perhaps
more importantly, balanced clustering results tend to be initialization-independent.
This is very nice, because the clustering algorithms do not need to be repeated
multiple times, resulting in even more efficient image clustering. In addition, our
algorithm seems to generalize well to different feature spaces and outperforms other
balancing approaches in terms of stability. For subsequent experiments β will be
set to 0.4, which resulted in (near-)optimal cluster quality for all evaluated datasets.
Especially the results on the netclean dataset show that a much larger value should
not be picked. Thus, one could argue that true feature similarity should be weighted
50% more important than balancing constraint in order to optimize the clustering
results.
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Figure 23: Results of Experiment 3 for the corel-13, corel-45 and the netclean dataset. Balancing
never impairs cluster quality but improves it in some cases (for instance on the
netclean dataset).
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Figure 24: Results of Experiment 3 for the caltech256, and the youtube dataset. For the youtube
dataset both correlograms and visual words pLSA features were used to investigate
how good the proposed bo-k-means algorithm generalizes with respect to different
features. Without balancing very small and very large clusters occur, being strongly
dependent on the initialization. In contrast, balancing renders the clustering result
almost initialization-independent.
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4.6 experiment 4 - the impact of balancing on hierarchical cluster-
ing

The fourth experiment proceeds with the evaluation of our proposed balancing
strategy by investigating its impact on hierarchical clustering. We are interested in
how our balancing approach impacts the hierarchical k-means algorithm, again both
balancing- and cluster quality-wise, and whether different branch factors have an
impact on our proposed algorithm.

Technical Details

Our proposed hbo-k-means algorithm and the regular h-k-means algorithm are com-
pared to a hierarchical agglomerative method using average linkage and euclidean
distance, and to the balanced agglomerative approach proposed by Borth et al., which
basically enhances the agglomerative approach by an additive penalty term to enforce
balancing equivalently to our balancing extension of k-means. The plots refer to these
bottom-up approaches as hierarchical a/e and balanced hierarch. a/e. Due to the huge
memory requirements of the O(N2) distance matrix, we have not been able to evalu-
ate the last two approaches on the caltech-256 dataset, which contains about 30.000

images. This clearly shows the need for more efficient image clustering approaches.
The clustering quality on different levels of the tree is evaluated as described in

Experiment 2 (see Section 4.4). The k-means-based methods are initialized only once
(again no multiple runs) and 50 epochs are allowed as in the third experiment. For
hbo-k-means again a convergence_threshold of 2% is used.

The plots comparing the branch factors (figures 30, 31 and 32a) only show the
performance of our hbo-k-means algorithm.

Discussion

The results of the fourth experiment can be found in Figures 25, 26, 27, 28 and 29.
Table 4 summarizes the runtime for the different clustering methods on each dataset.

From all results it can be observed that the pattern of top-down methods being
superior on the upper levels and bottom-up methods on the lower levels still persists.
Balancing especially improves the hierarchical agglomerative approach, causing it to
overtake top-down methods quality-wise much earlier. However, the runtime results
show that our proposed approach scales much better than hierarchical agglomerative
methods. This is particularly evident on the caltech-256 dataset where hbo-k-meansis
about 43 times faster than hierarchical a/e.

Our hbo-k-means algorithm offers comparable and sometimes slightly superior
performance compared to non-balanced h-k-means (e.g. on corel-45 or netclean
dataset). The approach also captivates in terms of balancing efficiency, driving down
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dataset #images #clusters h-k-means hbo-k-means hierarchical a/e

corel-13 1300 13 4.0 11.0 7.5

corel-45 4500 45 18.3 49.1 122.2

netclean 2000 200 8.2 16.0 15.7

caltech-256 29780 256 398.1 494.8 21411.6

youtube 5000 10 22.2 65.5 160.6

Table 4: The runtime for h-k-means, hbo-k-means and hierarchical a/e for each dataset. For the
k-means-based methods we used a branch factor of two. Especially the results on the
largest dataset, caltech-256, indicate that the proposed approach scales very well.

SDCS to 3%-5% for all datasets except netclean with 14% (measured at the peak at
the first tree level for a branch factor of 2 in comparison to h-k-means).

Figures 30, 31 and 32a show, that different branch factors have practically no effect.
Even perceived differences as for SDCS on the caltech-256 dataset turn out to be
mostly imperceptible (differences of less than 150 in cluster sizes when the average
cluster size is about 1000).

It can be concluded that our proposed hbo-k-means algorithm consistently performs
comparable or slightly better than h-k-means in terms of cluster quality. In addition,
it produces highly balanced clusters of almost the same size on all levels of the
tree (SDCS driven down to 3% compared to h-k-means). Taking a closer look at the
different branch factors, it can be seen that these have practically no effect on neither
cluster quality nor balancing. Therefore, this parameter can be easily changed to meet
particular applications needs.

4.7 experiment 5 - the large-scale test

In Section 3.2 the requirement of scalability was imposed as a key challenge addressed
in this thesis. To test whether the hbo-k-means algorithm meets this requirement to
a sufficiently large extent, the proposed method was tested on the youtube-large
dataset, which contains 716266 images of 225 different semantic concepts. The same
experimental setup and parameters as in Experiment 4 (see Section 4.6) were used.
The clustering took 4:07 hours using one 1150MHz core of a Quad-Core AMD
Opteron(tm) Processor 2356 machine and a maximum of 9.2GB of RAM (mainly
due to the high-dimensional features). Considering the huge image collection this
duration is small enough to be meaningfully applied in practice. Since a target
clustering corresponding to the 225 semantic concepts is available, external cluster
validity measures could be applied. The results are shown in Figure 32b.
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Figure 25: Results of Experiment 4 for the corel-13 dataset. The pattern of top-down methods
being superior on the upper levels and bottom-up methods on the lower levels
also persists when using balancing.
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Figure 26: Results of Experiment 4 for the corel-45 dataset. Balancing strongly impacts the
hierarchical agglomerative approach, causing it to overtake top-down methods
quality-wise much earlier.
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Figure 27: Results of Experiment 4 for the netclean dataset. The hbo-k-means algorithm
offers comparable and some time slightly superior performance compared to
non-balanced h-k-means.
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Figure 28: Results of Experiment 4 for the caltech-256 dataset. We have not been able to
evaluate hierarchical agglomerative approaches on the caltech-256 dataset due
to the O(N2) memory complexity. This clearly shows the need for more efficient
image clustering approaches.
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Figure 29: Results of Experiment 4 for the youtube dataset. hbo-k-means effectively pro-
duces highly balanced clusters, driving down SDCS to 3%-5% in comparison to
h-k-means.
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Figure 30: Results of Experiment 4 comparing different branchfactors for the corel-13 and
the corel-45 dataset. The branch factor can easily be changed to meet particular
applications needs, because it has practically no effect on neither cluster quality
nor balancing.
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Figure 31: Results of Experiment 4 comparing different branch factors for the netclean and
the caltech-256 dataset. Even though there seem to be large differences in SDCS for
the caltech-256 dataset, these are more or less imperceptible, because they are still
rather small compared to the large size of the dataset and its clusters.
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(a) Results of Experiment 4 comparing dif-
ferent branchfactors for the youtube
dataset.

(b) Results of the large-scale experi-
ment using the youtube-large dataset.
The proposed hbo-k-means algorithm
meets the scalability requirement by
clustering 716k images.





5
C O N C L U S I O N

The advent of huge image and video databases has created the need for managing
tools, which help the user with searching and organizing the digital data automatically
by their content. One solution is browsing environments, which structure the data
by image clustering. For this specific application the employed clustering algorithm
needs to be highly scalable and capable of producing balanced structures to be useful
for the browsing task.

One main contribution of this thesis is a comprehensive suitability study of k-means-
based and hierarchical agglomerative clustering techniques for the described task.
A second contribution is a simple but efficient approach to enforce highly balanced
structures without impairing cluster quality. This approach was integrated in a
hierarchical frequency sensitive variant of the online k-means algorithm, which we
call hbo-k-means. This method was demonstrated to be very scalable and will also be
used in a practically employed system within the FIVES Project.

5.1 discussion of results

It has been shown that k-means-based methods are suitable for content-based image
clustering, especially when balancing or scalability requirements are imposed as
it is the case for the application of image browsing. Actually, they perform almost
surprisingly well compared to the computationally more expensive hierarchical
agglomerative methods, which largely suffer from producing unbalanced structures.

Hierarchical k-means methods do not necessarily perform worse than hierarchical
agglomerative approaches. In fact, they perform clearly superior for small numbers of
clusters. However, the hierarchical agglomerative methods outperform the top-down
approach on lower levels of the tree. Compared to flat k-means, hierarchical k-means
can be concluded to lose about 5%-28% in terms of cluster quality (Weighted Purity
and V-Measure) for the ground-truth number of clusters. Thus, it can be inferred
that it is not the nature of the k-means algorithm but the constraints of the top-down
approach that are responsible for the loss of performance.

But from these constraints also the advantages of the proposed approach arise.
First, the top-down approach proves to be substantially more scalable. This has been
tested on a dataset comprising over 700.000 images. Second, using the proposed
balancing method bo-k-means or its hierarchical extension hbo-k-means we obtain
highly balanced clusters while preserving or even improving cluster quality. In
addition, the strong regularization effect of balancing renders the clustering result

65
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almost initialization-independent, significantly alleviating the inherent problem of
initialization-dependence of k-means-based methods. Since the algorithm does not
need to be repeated multiple times, this results in an even more efficient approach to
image clustering.

Frequency Sensitive Competitive Learning (FSCL) methods, a broad class of ex-
isting balancing approaches, which essentially perform cluster deformation, were
observed to behave unstable in very high-dimensional feature spaces often leading to
degenerate solutions. In contrast, our proposed method hbo-k-means stably produces
balanced clusters in a simple and efficient way by incorporating a cluster size sensitive
additive bias. This proposed balancing approach was found to outperform FSCL
methods in terms of stability.

Finally, another advantage of the proposed approach is the ability to produce a
nested series of partitions of any desired branch factor. It can be observed that they
have practically no effect on neither cluster quality nor balancing. Hence, a suitable
branch factor can be chosen to meet particular applications needs.

5.2 future work

There are several open issues related to content-based image clustering that need
further study. In the following paragraphs an outline of the immediate future work is
presented.

First of all, it needs to be mentioned that our proposed k-means-based top-down
approach can be massively parallelized to utilize today’s multi-core machines or
graphics processing units (GPU). Since top-down approaches constrain images to re-
main in “their” branch of the constructed clustering tree, all branches are independent.
Therefore, all further clustering processes can easily be executed in parallel.

Another important issue is to effectively deal with incremental insertions and dele-
tions in the image database. These changing and usually growing image collections
are very common in practice. For large collections, recomputing the whole nested
clustering is too expensive and not mandatory. For instance, it might suffice to delete
specific nodes of the tree structure or fuse new images with its most similar one in the
database to a new node (see [11]). Also, our online approach, where we handle one
image at a time, can be seen as a first step towards evolving databases. However, we
still lack a thorough investigation on how this behaves over time and how different
clustering techniques might affect this behavior.

We described the complexity of image clustering due to the subjectivity of the task
(recall the example of the elephant, the tuna fish and the whale). The question is,
which partitions of the image collection correspond best to the users task and will
ultimately satisfy him the most. This is a major problem, which also complicates
the evaluation of clustering results. In this thesis, this issue was addressed by using
ground-truth partitioning (on a single level) of the used datasets. However, to get a
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better understanding of the subjectivity of content-based image browsing, studies
are required to examine user satisfaction for this task. In addition, it should be
investigated how clustering could be dynamically adapted in an efficient way to meet
different users needs.

A second major problem, referred to as semantic gap, describes the “lack of
coincidence between the information that one can extract from the data and the
interpretation of the same data for a user in a given situation” (see [51]). It is under-
stood that this semantic gap cannot be bridged entirely, because a comprehensive
user context model does not exist for every situation. Images are usually associated
with context information, such as textual captions, surrounding text (e.g. on web
pages), image file names or existing folder structures, which could be used to be
able to group semantically related images, which would not be deemed similar if
solely relying on visual information (for clustering of “paired data” see [7]). For
example, Google Image Swirl utilizes metadata in addition to multiple image content
features to organize image search results by hierarchical clustering (see [35]). The
incorporation of metadata in our system would not require major changes. Only a
compound distance measure to measure the dissimilarity of content-based image
features and available metadata would be required.
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