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Preface

”Astronomy is perhaps the science whose discoveries owe least to chance, in which

human understanding appears in its whole magnitude, and through which man can

best learn how small he is.”

G. C. Lichtenberg (1742 - 1799) German physicist

”Let no one expect anything of certainty from astronomy, lest if anyone take as

true that which has been constructed for another use, he go away . . . a bigger fool

than when he came to it.”

Nicolas Copernicus (1473 - 1543) Polish astronomer

This thesis describes a new system for ”Finding Satellite Tracks” and ”Measure-

ment of Galaxy Ellipticity” based on the modern geometric and statistical approaches.

There is an increasing need of using methods with solid mathematical and statistical

foundation in astronomical image processing. Where the computational methods are

serving in all disciplines of science, they are becoming popular in the field of astron-

omy as well. Currently different computational systems are required to be numerically

optimized before to get applied on astronomical images. So at present there is no

single system which solves the problems of astronomers using computational meth-

ods based on modern approaches. The system ”Finding Satellite Tracks” is based on

geometric matching method ”Recognition by Adaptive Subdivision of Transformation

Space (RAST)” and ”Measurement of Galaxy Ellipticity” based on the statistical

method ”Maximum Likelihood Estimation”.
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Chapter 1

Introduction

1.1 Motivation

Astronomical images play an important role in man’s effort to understand the

universe. These images are taken by space observatories spread across the globe.

Acute weather conditions are required for image capturing.

It takes several minutes to take a single astronomical image. Therefore it is impor-

tant to extract maximum information from the astronomical images. These images

contain important information about stars and galaxies and irrelevant information

(like satellite tracks) which appear quite often. These irrelevant information cre-

ate problems for astronomers in analyzing the images. Since data collection is time

consuming, the images containing additional objects can not be simply discarded.

Instead, irrelevant objects have to be removed from these images [6].

Currently astronomers remove these satellite tracks manually from images accord-

ing to [5]. We replace this traditional approach by using a computational system. This

system is based on a Geometric Matching technique called ”Recognition by Adaptive

Subdivision of Transformation Space (RAST)”. A working system will help in saving

a lot of human effort to remove these tracks manually.

The most important objects for astronomers in astronomical images are galaxies.

According to [8] galaxies occur in three different shapes: elliptical, spirals and irreg-

ulars. The most common shape is elliptic. The scope of this work is limited to the

1



CHAPTER 1. INTRODUCTION 2

measurement of elliptic shape galaxies. ”Maximum Likelihood Estimation” is used to

measure elliptical galaxies by estimating parameters. From these parameters a shape

of ellipse could be measured by estimating the major and minor axes in the xy-plane.

A synthetic image based on estimated parameters containing elliptical galaxies is

generated for visualization and further analysis by astronomers.

1.2 Problem Formulation

The objective of this thesis work is based on two main tasks: to find satellite tracks

in the images taken by astronomers and to measure elliptic shape galaxies.

1.2.1 Finding Satellite Tracks

The images taken from the sky are contaminated by a lot of noise (Cosmic rays, CCD

defects, ghost images and satellite tracks) which disturbs the detection or identifi-

cation of important objects in the images like stars and galaxies. In these images

satellite tracks can be characterized as straight lines. The major aim of this part

of work is to develop a system to find and remove satellite tracks in astronomical

images. In this system the RAST algorithm is applied which is based on Geometric

Matching techniques.

1.2.2 Measurement of Galaxy Ellipticity

This part of thesis work is based on machine learning techniques in order to determine

the shapes of galaxies. The aim of this work is to calculate size, position and rotation

of elliptical galaxies. In this work the popular statistical method Maximum Likelihood

Estimation is applied to estimate mean, covariance and scale factor of a Gaussian

grayscale distribution.
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1.3 Related Work

1.3.1 Satellite Tracks Removal

There is no computational method to reliably identify and remove satellite tracks

at present. Currently astronomers do this job by hand after selecting and masking the

images having satellite track. After masking satellite tracks they ignore the masked

area while doing further processing of the objects [5].

A general adaptive method Cleaning Sky Survey databases using Hough Transform

and Renewal String Approaches was introduced by A.J. Storkey et al. in 2004 to

remove unusual objects in the astronomical images. This method was developed to

remove four types of objects - satellite or aeroplane tracks, scratches, fibers and other

linear phenomena introduced to the plate, circular halos around bright stars due to

internal reflections within the telescope and diffraction spikes near to the bright stars

in the sky survey data using catalogue of objects as described in [13]. The system

we present is different from the adaptive method, as our system uses pixel based

representation of images instead of using catalogue of objects.

1.3.2 Measurement of Galaxy Ellipticity

SExtractor, an astronomical source extractor system, is in use of astronomers for

building catalogue of the objects from astronomical data. This system provides the

feature to measure the basic shape and ellipse parameters as described in [1]. But

this system is not extendable to measure different shapes of galaxies and stars e.g.

when objects overlap.

A. Refregier and D. Bacon introduced a new formalism named Shapelets which

provides a way to measure galaxy shapes. As defined in [12], Shapelets are a com-

plete, Orthonormal set of 2D basis functions constructed from Laguerre or Hermite

polynomials weighted by a Gaussian. This method describes shape of each object

with a series of localized basic functions. For estimating the complex shapes like

overlapping galaxies, it is difficult to decide whether it is one or two overlapping ob-

jects using this method. While our system is an adaptive system which can easily
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describe these complex shapes. The method we present describes each object with

the shape parameters instead of describing an object with a series of localized basic

functions. The presented system measures only the elliptic shape parameters and

objects could be identified on the basis of these parameters. The presented system is

also computationally less expensive and is based on statistical methods to solve this

problem. The presented system measures galaxy ellipticity and is easily extendable to

measure different shapes and rotations of elliptical as well as other shapes of galaxies

and stars.

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 gives a brief overview of image pre-

processing and related work including data preparation for satellite tracks system.

Then the use of RAST algorithm in the system is described for finding straight lines

in the image. Chapter 3 explains the procedure of parameter estimation for elliptical

galaxies. It covers the statistical method Maximum Likelihood Estimation for esti-

mating the parameters. Chapter 4 presents evaluation of the tasks and Chapter 5

leads to the discussion of conclusions and future work.



Chapter 2

Finding Satellite Tracks

2.1 Image Pre-Processing

2.1.1 Conversion

The available astronomical images are generally in Flexible Image Transport System

(FITS) format. This format is widely used in astronomy for convenient exchange of

astronomical data. FITS images are composed of a sequence of header data units

(HDUs). A header data unit contains keywords (value statements) that describe the

organization of the data in HDUs and the format of the data contents. Based on

the special structure of these header data units, FITS images may provide additional

information like instrument used, status and history of the data etc. [9].

The following pre-processing steps are performed on the given images before ap-

plying RAST.

Binarization

Binarization is the process of converting a grayscale image to a black and white

image. A grayscale image contains pixel intensity range of 0 to 255 levels. The given

images are binarized and converted from FITS grayscale images to Portable Greymap

(PGM) images. In this work the binarization is done by using global thresholding.

5



CHAPTER 2. FINDING SATELLITE TRACKS 6

Global thresholding sets all pixels above a defined value to white and the rest of the

pixels to black in the image. It is very important to decide the appropriate threshold

value to binarize the image, though it is difficult to decide a global value which is

suitable for all images [10]. In this case the intensity range does not vary much from

image to image. After looking at grayscale values in different images on the available

data set, 102 were founded as a suitable value (40 %) threshold of total intensity

range 0− 255.

Convert, a utility in the ImageMagick software package was used to binarize the

grayscale images.

A C++ routine was written which calls the Convert command. It walks through the

current and subdirectories and converts FITS grayscale images to binary images. An

example image before and after binarization is shown in Figure 2.1.

2.1.2 Morphological Operation

After binarization the morphological operation Opening was applied to remove noise

and CCD defects in the images.

Opening

Opening is based on the morphological operations Erosion and Dilation. Opening

smooths the inside of the object contour, breaks narrow strips and eliminates thin

portions of the image. It is done by first applying erosion and then dilation operations

on the image.

Erosion shrinks the foreground objects in the image by a certain amount. For two

sets A and B the erosion of A by B in Z2 is defined as:

A	B = {z|(B)z ⊆ A} (2.1)

The set A represents foreground pixels in the original image and set B is referred

as a structuring element. The erosion of A by B is the image containing all the
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(a) Original Grey Scale Image (b) With Contrast Streching for
Display Purpose

(c) After Binarization

Figure 2.1: Example of binarized image (foreground objects become visible), the
binarized image is inverted to white background and black foreground
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foreground pixels, z, in A such that the translation (B)z of B by z is completely

contained in A.

Dilation dilates foreground objects in the image. For sets A and B where B is a

symmetric structuring element, dilation of set A by B in Z2 is defined as:

A⊕B = {z|(B)z ∩ A 6= ∅} (2.2)

The dilation of A by structuring element B translated by z such that B is over-

lapped by at least one element in set A [10].

The amount of growing and shrinking the size of objects depends on the struc-

turing element. CCD defects and noise have to be eliminated. These defects have

a typical size of one to three pixels. So the opening is performed by using 3 × 3

structuring element.

Pgmmorphconv is used for the opening operation. It is a utility in the Netpbm soft-

ware package, a graphics programming library. The opening effect is demonstrated

in Figure 2.2.

2.2 Geometric Matching

2.2.1 General Description

There are different algorithms to perform geometric matching. Many geometric

matching problems in computer vision are based on image models. A model of an

image can have geometric features like points, lines, arcs etc. Different algorithms

are developed to match these geometric features in the model image [4]. As satellite

tracks have geometric resemblance to straight lines, we look for line features in the

image. In this work the RAST algorithm is applied for finding satellite tracks in the

image.
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(a) binary image (b) after Opening

Figure 2.2: Example of opening effect (CCD defect and bad pixels are removed), Both
the images are inverted to white background and black foreground
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2.2.2 Data Preparation

RAST takes sample points as input features. The computation of these sample

points is described in this section. In binarized images these input features consist of

the pixel positions of the foreground objects.

The binarized images contains white foreground objects on a black background.

A routine is written in C++, which computes the (x, y) positions of all the white

pixels in the image. These pixels constitute the sample points.

Following are the steps involved in computing pixel positions in the image.

. Read the converted binary image

. For each pixel (x,y)

. if pixel = white then

. Write (x,y) pixel position into the data file

2.2.3 Recognition by Adaptive Subdivision of Transforma-

tion Space (RAST) Algorithm

The RAST algorithm was developed by Breuel [2]. RAST consists of a family of

geometric matching algorithms, one of these is for finding lines.

2.2.4 Geometric Transformation

The RAST algorithm is applied on prepared sample data points. RAST is based

on forward transformation (model to image) and an error model [3]. In this case, the

algorithm takes a collection of sample data points and tries to fit an optimal line on

these sample points in the image.

The algorithm is implemented using hierarchical and adaptive subdivision of the

space of line parameters. RAST implements a ”best first” search by a binary tree

based on recursive subdivision of the parameter space [3].
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(a) Points (b) RAST Line Fitting

Figure 2.3: A hand made image with sample data points and reconstructed copy of
the hand made image with RAST line fitting

The RAST algorithm considers a set of all possible parameters as region of interest

before execution. Then it recursively divides the parameter space into sub regions.

For each region in the parameter space there is a set of consistent image features under

bounded error. During the execution RAST eliminates the regions of disinterest.

These are the regions which do not contain a solution [3].

An illustration of sample points and RAST line fitting is presented in Figure 2.3.

2.2.5 Parametrization

The RAST algorithm for finding lines based on the parametric model, described by

line parameters (r, θ). In the xy-plane, r is the distance of the line from the origin

and θ is the angle between the perpendicular and the x-axis. The angle θ is always

measured anticlockwise from the positive side of the x-axis. As shown in 2.3.

xcosθ + ysinθ = r (2.3)
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X

Y

r



Figure 2.4: Representation of r and θ in xy-plane

An illustration of line parameters in xy-plane is presented in Figure 2.4.

There are different parameters to the algorithm like the epsilon, quality, tolerance

and angle tolerance.

• The epsilon (eps) parameter defines the distance up to which a point can con-

tribute to the line.

• The quality (minquality) parameter specifies the minimum acceptable quality

of a line as given by:

q(ϑ, P ) =
N∑

k=1

max(0, 1− d2
k

ε2
) (2.4)

where ϑ is the set of parameters (r,θ), P is set of points, N is total number of

points and dk is the distance of kth point from the line.

• The tolerance (tol) and angle tolerance (atol) parameters specifies the allowed

deviation of the parameters r and θ respectively from their optimal values.

The RAST algorithm is used with default values of these parameters. The default

values of tolerance is set to 0.1 and the value of angle-tolerance is set to 0.001 in the

implementation by Breuel [3].
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To find lines in the astronomical images the the epsilon (eps) parameter value is

set to 2 and the weight (minweight) of the line is set to 1000.

2.2.6 The Algorithm

The algorithm is used with the interest of finding the best match of all possible

lines in the image. The execution steps of RAST algorithm are explained to calculate

the quality function and error tolerance function. [3].

Following are the steps involved in the execution of RAST for finding lines.

• Step 1. Choose an initial region T in parameter space containing all specified

parameter values.

• Step 2. Define a priority queue Q, where the priority of the queue Q is based on

the upper bound on the quality of possible best match in that region as defined

by the equation 2.4. The initial region is inserted into the priority queue Q.

• Step 3. Extract the element of the highest priority from the queue Q.

• Step 4. If the upper bound on the quality of the match in the extracted region

T is less than the minimum quality threshold, go to step 7.

• Step 5. If the size of the region T is less than the tolerance size of the region

dimensions r and θ then the region T is reported as a solution and continue to

step 3.

• Step 6. If the specified size of the region T is greater than the minimum size of

the interval for a solution then it is subdivided into two sub regions T1 and T2

and these sub regions are pushed into the priority queue Q and the algorithm

continues to step 3.

• Step 7. Terminate
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2.2.7 Output

The algorithm returns a list of parameter values r and θ. The RAST algorithm

provides an output parameter maximum result to find more than one lines in the

images.

2.3 Image Reconstruction

2.3.1 General Description

To remove lines from the image the position of the lines are computed by the RAST

algorithm. To visualize the removal of the satellite tracks having geometric resem-

blance to lines, a new image is reconstructed from the binarized copy of the image.

It is important to make a decision whether a line founded by RAST algorithm is a

satellite tracks or not. This decision is based on the size of the line, that is how many

pixels contribute to this line. An assumption is made that if the weight of the line is

1000 or greater, then the line found by the algorithm is considered as satellite track.

2.3.2 Painting Image

This algorithm reads the original image (PGM file) and data (line file) of pixel posi-

tions computed by the RAST algorithm. The number of lines returned by the RAST

algorithm depends on the value of maxresult parameter. By setting the value of the

maxresult parameter to more than one, the algorithm returns the optimal quality

lines in decreasing order. The line found by the algorithm is painted black in the re-

constructed image with a width of 20 pixels. The painted width of the line is decided

on the basis of observed thickness of the satellite track. Examples of binarized image

before and after the removal of a satellite track are shown in the following 2.5,2.6.
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Figure 2.5: Example: Difference images of satellite tracks removal
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Figure 2.6: Example continued: Binarized image containing satellite track : Recon-
structed image after removal of satellite track, in this image few objects are removed
because they were very close to the satellite track



CHAPTER 2. FINDING SATELLITE TRACKS 17

2.4 Summary

In the first part of the thesis a computation method for identification and removal of

satellite tracks in astronomical images is presented as an alternative to the manual

approach. This computation method is based on geometric matching techniques for

finding lines in the images. There are different methods available for finding geometric

shapes in images. As satellite tracks has geometric resemblance to lines, the focus

of this part of thesis was on finding lines in the astronomical images. The RAST

algorithm is applied to find these satellite tracks. The problem in this method was

to find the right size of a satellite track. The problem of measurement of the size of

satellite track is solved by visualizing satellite tracks of different sizes. An assumption

is made that the minimum weight of the line formed by a satellite track is 1000 pixels.

Results of this method are visualized by reconstructing the image after removal of

satellite tracks. A numeric evaluation is given in Chapter 4 and Section 4.1. The

provided solution is quite fast. It can find and remove satellite tracks from an image

of size 2000x4000 pixels on a Pentium 4 processor running at 2 GHz with a typical

computational time less than 60 seconds. This computation time could be decreased

with high performance hardware. This solution will provide ease to astronomers for

their further processing of objects in the images.



Chapter 3

Measurement of Galaxy Ellipticity

3.1 Image Pre-Processing

3.1.1 Conversion

As explained in the section 2.1, given FITS format images were converted to binary

format. In addition, the FITS images were also converted to grayscale image (PGM)

format. The converted grayscale and binary images were used for further processing.

3.2 Detection of Objects

After pre-processing of the binary images, the idea is to find the position of all the

foreground objects in the images. The position of the foreground objects is needed

for the application of ”Maximum Likelihood Estimation” to measure elliptic shape

galaxies.

3.2.1 Connected Components

The connected components algorithm is applied to identify the position of all the

foreground objects in the image. All the white pixels in a binary image which are

connected to each other define a cluster of ”Connected Components”. These pixels

should be connected to each other in a way that a path could be established between

18
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Figure 3.1: Example of bounding boxes painted as red and white spaces painted as
yellow

the connected points. There are different implementations of connected components

algorithm like the Regions Growing Method and Labeling Method. In this work the la-

beling method is used to find connected components in a binarized image as described

in Chapter 4 and Section 4.1 of [7].

In order to prepare data for ”Maximum Likelihood Estimation” a bounding box,

defined by its coordinates x-low, x-high, y-low and y-high is computed for each cluster

of connected components. The bounding box is the smallest rectangle in which the

connected components fall.

To visualize the effect of connected components, the copy of binary image is con-

structed and rectangles are drawn in the image. These rectangles are the bounding

boxes painted as red. The white spaces in a rectangle are painted as yellow. An

illustration of identified connected components is presented in Figure 3.1. Only one

object is assumed in a bounding box. A Gaussian grayscale distribution is estimated

for each bounding box.
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3.3 Measurement of Galaxies

3.3.1 Gaussian Grayscale Distribution

Gaussian grayscale distribution is calculated on the basis of sample data points. All

the points in a bounding box constitute sample data. A Gaussian grayscale distribu-

tion is calculated to describe physical distribution of events.

If X is the vector of sample data points then as given by [11] the probability of

each sample is:

P (Xi) (3.1)

.

Therefore the probability for whole set of sample data points based on P (Xi)

would be:

P (X) =
n∏

i=1

1

2π|Σ| 12
exp−

1
2
(Xi−µ)T Σ−1(Xi−µ) (3.2)

.

The parameters mean µ and the covariance matrix Σ for a Gaussian distribution

are estimated using Maximum Likelihood Estimation.

3.3.2 Maximum Likelihood Estimation

In the Gaussian case the maximum likelihood estimation is the process of calculating

the mean and the covariance matrix. If the samples are considered as cloud of points,

then the sample mean would be the centroid of the cloud which is the arithmetic aver-

age of the samples. If x1, ...xn are sample data points obtained from the distribution

of x then the mean µ is defined as:

µ =
1

n

n∑
k=1

(xk) (3.3)

If x1, ...xn are the sample data points then a covariance matrix Σ is estimated as
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[11]:

Σ =
1

n

n∑
k=1

(xk − µ)(xk − µ)T (3.4)

For astronomical images the value of a pixel represents the brightness. The elliptic

galaxies has a characteristic that they are very bright at the center and faint in

the boundaries. Therefore the elliptic galaxies are modeled by Gaussian grayscale

distribution.

In the binary case the mean µ and the covariance matrix Σ as given by the

equations (3.3, 3.4) are normalized by the total number of sample points n. In the

greyscale image each sample points xi may have value in the range 0-255. Therefore

the normalization is done by the sum of the grey values of all the sample data points

x1, ...xn.

In this case xi = (x, y)T represents the position of a foreground pixels. Let g[xi]

be the intensity or value of the pixel at (x, y) then the normalization factor α for

Gaussian grayscale distribution is calculated as:

α =

xhigh∑
xlow

yhigh∑
ylow

g[x, y] (3.5)

After obtaining the scale factor α mean µ is calculated as:

µ =
1

α

xhigh∑
xlow

yhigh∑
ylow

g[x, y]

(
x

y

)
(3.6)

Once the scale factor α and the mean µ is calculated then covariance matrix Σ

for Gaussian grayscale distribution is calculated as:

Σ =
1

α

xhigh∑
xlow

yhigh∑
ylow

g[x, y](

(
x

y

)
− µ)(

(
x

y

)
− µ)T (3.7)

The maximum likelihood estimation for unknown mean µ and covariance matrix

Σ is described in Chapter 3 and Section 3.2.3 of [11]. A C++ program was written

to estimate maximum likelihood by estimating parameters (mean, covariance matrix
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and scale factor).

3.3.3 Image Reconstruction

To see how good this maximum likelihood estimation technique works an application

is developed for visual evaluation. As the estimated parameters calculated in the

previous section do not give intuitive understanding. A new synthetic image h[x, y]

of the size of the original image is created from the estimated parameters (mean µ

, covariance matrix Σ, scale factor α and the number of samples (the dimensions of

each bounding box) to visualize the result of the modeled galaxies.

Once the Gaussian grayscale distribution is calculated then it is multiplied by the

scale factor α as discussed in 3.5.

h[x, y] =
α

2π|Σ| 12
exp−

1
2
((x

y)−µ)T Σ−1((x
y)−µ) (3.8)

While reconstructing the synthetic image h[x, y] each bounding box is replaced by

the object constructed from the estimated parameters. These estimated parameters

define the grayscale distribution which should be in the range from 0 to 255. If the

value exceeds 255 then this value is set to grayscale maximum value 255. An example

of Gaussian grayscale distribution is drawn in Figure 3.2.

While reconstructing the image, each pixel value of a bounding box is replaced

with the estimated grayscale value. This Gaussian grayscale distribution gives the

maximum intensity value of pixels at the center of the object and this intensity value

decreases in the outer bound of the object. A C++ program is written to reconstruct

this synthetic image from the estimated parameters. A more detailed evaluation is

given in Chapter 4 and Section 4.2. Different images containing original grayscale

galaxies and reconstructed galaxies are presented here.
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Figure 3.2: An example of Gaussian grayscale distribution
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Figure 3.3: Example: Original and reconstructed galaxies

Figure 3.4: Example - Continued : Original grayscale galaxies : Reconstructed galax-
ies from estimate parameters
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3.4 Summary

In this part of thesis work, the idea was to measure elliptic shape galaxies by estimat-

ing parameters in the astronomical images. Mostly, elliptic shape galaxies look like a

scaled Gaussian. So in this work Gaussian grayscale distributions are calculated. A

connected component algorithm is applied to detect the position of foreground objects

in the image. This connected component algorithm uses labeling method to compute

pixel positions of the objects which are connected to each other. The algorithm gen-

erates bounding boxes as output. Each bounding box is treated as one object in

the image. Based on the assumption of each bounding box having one object and

the shape of this object is like a scaled Gaussian the statistical method maximum

likelihood estimation is applied to estimate parameters of each Gaussian. For visual

examination, a synthetic image is reconstructed from the estimate parameters.



Chapter 4

Evaluation

The evaluation of two tasks - removal of satellite tracks and the measurement of

galaxy ellipticity - are done separately using a large database of images provided

by the Astronomy department of the University of Bonn, Germany. This database

consists of 1000 images.

4.1 Removal of Satellite Tracks

A total of 102 random images are chosen to evaluate this method. To generate

ground truth information, the images are visually examined and annotated whether

they contain satellite tracks or not. The system described in Chapter 2 is applied to

find satellite tracks in the given dataset of images.

4.1.1 Results

The results of the system are presented in table 4.1. The table gives true positive

(Tp), true negative (Tn), false positive (Fp) and false negative (Fn) number of satellite

tracks detection.

26
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Table 4.1: Different types of errors made by satellite tracks detection application.
Each column represents the different type of error. The column labels are: total true
positive (Tp), total true negative (Tn), total false positive (Fp), total false negative
(Fn)

Total Images Tp Tn Fp Fn

Satellite Track Detection 102 2 87 5 8

True positive (Tp) are the satellite tracks which actually exists and are reported

as tracks as well. True negative (Tn) are the images without satellite tracks, which

are correctly separated as free of tracks. False positive (Fp) are the images which

do not contain satellite tracks but are detected as images containing satellite tracks.

False negative (Fn) are the images containing satellite tracks but are not reported as

images containing satellite tracks.

The system has detected 2 true positive (Tp) images containing satellite tracks

which are processed by the system as well. There are 87 true negative (Tn) images

identified by the system where there is no satellite track exists. Therefore the accuracy

of system for finding satellite tracks is 87.3%, which is the total number of correct

detections.

The system has detected 5 false positive (Fp) images. The false positive (Fp) im-

ages are analyzed and it turned out to some expanded stars and galaxies in the image

due to the brightness and make a Light Spike in the available database of images.

These light spikes look like vertical satellite tracks. While considering these light

spikes as satellite tracks the algorithm detects and removes them as well. These light

spikes are removed completely except the circular shaped bright stars or galaxies due

to their thickness. An illustration of the images having stars and galaxies effected

with the telescope light spikes before and after removal of these light spikes are pre-

sented in the Figure 4.1.
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Figure 4.1: The original image containing light spikes, there after the removal of these
light spikes a few points of the galaxies still remains visible in the output image
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Table 4.2: Different types of results made by RAST algorithm while finding satellite
tracks in the images. Each column represents different type of error. The column
labels are: true positive (Tp), true negative (Tn), false positive (Fp), false negative
(Fn)

Algorithm Total Images Tp Tn Fp Fn

RAST 94 2 87 5 0

The system has detected 8 False negative (Fn) images. These False negative (Fn)

images are analyzed and the images were found to contain satellite tracks but in

very low brightness. The system was not able to detect satellite tracks in them.

After analyzing False negative (Fn) images deeply, it is found that the original FITS

images do not contain DATAMIN and DATAMAX fields. As the header data units

(HDUs) of FITS images have DATAMIN and DATAMAX containing the range of

grayscale values in the images. DATAMIN describes the minimum and DATAMAX

describes the maximum gray value in the image. The foreground objects are lost

already in the conversion step, so there is no chance of detection by RAST algorithm.

This failure was not because of the RAST algorithm but was due to the missing

information about DATAMIN and DATAMAX in FITS header data units (HDUs)

which are the essential information required for the conversion process.

Therefore a new evaluation scheme was decided where these black images were

removed from the test set. The results of this new evaluation scheme is presented in

a separate table 4.2.

As the table shows that the RAST algorithm did not find any false negative (Fn)

results. The accuracy of our algorithm is increased to 94.7% with this evaluation

scheme.
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4.2 Measurement of Galaxy ellipticity

As there is no ground truth available which provides the parameters of the elliptical

galaxies. So, without the ground truth a numerical evaluation of the maximum-

likelihood estimation could not be conducted. To see how good the maximum like-

lihood estimation technique is in estimating parameters for elliptic shape galaxies, a

subjective evaluation scheme is conducted. The evaluation of this method is organized

by comparing the original image with the reconstructed synthetic image.

4.2.1 Results

Both the images (original and modeled) are examined and the results are analyzed

visually. Based on the subjective evaluation scheme results of this method is organized

in two categories: elliptic shape modeled galaxies and error modeled shapes.

While evaluating the modeled shapes and comparing them with the original im-

ages different elliptic shape modeled galaxies were found. Some of the elliptic shape

modeled galaxies with different rotations are presented in the Figures 4.2(a) to 4.3(c).

While evaluating the modeled shapes and comparing them with the original images

different error modeled shapes were found. Some of the error modeled shapes are

presented in the Figures 4.4 to 4.5.
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Figure 4.2: Example of galaxies reconstruction
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Figure 4.3: Example - continued: On the left hand side in the original grayscale images
there are different elliptical galaxies and on the right hand side there are elliptic shape
galaxies. These reconstructed shapes of the galaxies with different rotation are similar
to the elliptic shape galaxies in the original images
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Figure 4.4: Example: On the original grayscale image there is a galaxy with telescope
light spike which look like an expanded galaxy. In the reconstructed image the error
shape is modeled as an elliptic shape galaxy
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Figure 4.5: Example - continued: On the original grayscale image there is a galaxy
with CCD-defect form a small line. In the reconstructed image the error shape is
modeled as an elliptic shape galaxy



Chapter 5

Conclusion and Future Work

We have developed a system to find satellite tracks and to measure elliptic shape

galaxies in the images taken by astronomers. In this system the removal of satellite

tracks is done using the geometric matching algorithm RAST. While identifying the

satellite tracks in astronomical images, it is important to know the actual size of the

satellite tracks. Currently, the system is implemented based on the observation that

if 1000 or more pixels contribute to make a line then this line is a satellite track.

The numerical evaluation of this part of the system is done on a large database of

astronomical images and the performance of this system is presented. The accuracy

of our system is 94.7%. The second part of this system estimates different parameters

in order to measure galaxy ellipticity using a statistical method Maximum Likelihood

Estimation. We have presented a subjective evaluation of this part of the system.

This system can be extended in several ways.

• Currently, the observed thickness of the satellite tracks is set to width of 20

pixels which could be refined after knowing the minimum size of the satellite

track.

• Currently, every object in a bounding box is modeled as an elliptic shape and

considered as a single scaled Gaussian. But there could be two or more overlap-

ping objects in each bounding box. To solve this problem, a Gaussian Mixture

35
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Model could be applied to classify overlapping objects.

• Currently, parameters of the elliptic shape galaxies are estimated and their

shapes are modeled. After estimating other shapes of galaxies like Normal

Spirals and Barred Spirals etc. they could be further classified.
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